Modeling, Dynamics, and Control of Tethered Satellite Systems

Joshua R. Ellis

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Aerospace Engineering

Christopher D. Hall, Chair
Craig A. Woolsey
Mayuresh J. Patil
Scott L. Hendricks

March 23, 2010
Blacksburg, Virginia

Keywords: tethered satellite systems, verification and validation, finite element method,
Floquet theory, sliding mode control.
Copyright 2010, Joshua R. Ellis



Modeling, Dynamics, and Control of Tethered Satellite Systems
Joshua R. Ellis
(ABSTRACT)

Tethered satellite systems (TSS) can be utilized for a wide range of space-based applica-
tions, such as satellite formation control and propellantless orbital maneuvering by means of
momentum transfer and electrodynamic thrusting. A TSS is a complicated physical system
operating in a continuously varying physical environment, so most research on TSS dynamics
and control makes use of simplified system models to make predictions about the behavior
of the system. In spite of this fact, little effort is ever made to validate the predictions made
by these simplified models.

In an ideal situation, experimental data would be used to validate the predictions made
by simplified T'SS models. Unfortunately, adequate experimental data on TSS dynamics
and control is not readily available at this time, so some other means of validation must
be employed. In this work, we present a validation procedure based on the creation of a
top-level computational model, the predictions of which are used in place of experimental
data. The validity of all predictions made by lower-level computational models is assessed
by comparing them to predictions made by the top-level computational model. In addition
to the proposed validation procedure, a top-level TSS computational model is developed and
rigorously verified.

A lower-level T'SS model is used to study the dynamics of the tether in a spinning TSS.
Floquet theory is used to show that the lower-level model predicts that the pendular motion
and transverse elastic vibrations of the tether are unstable for certain in-plane spin rates
and system mass properties. Approximate solutions for the out-of-plane pendular motion
are also derived for the case of high in-plane spin rates. The lower-level system model is also
used to derive control laws for the pendular motion of the tether. Several different nonlinear
control design techniques are used to derive the control laws, including methods that can
account, for the effects of dynamics not accounted for by the lower-level model. All of the
results obtained using the lower-level system model are compared to predictions made by the
top-level computational model to assess their validity and applicability to an actual TSS.
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Chapter 1

Introduction

In recent years tethered satellite systems (T'SS) have been proposed for a number of space
applications including formation control of satellite clusters, orbital maneuvering of satellites,
and numerous scientific applications such as observations of Earth’s upper atmosphere and
magnetic field. Tethered satellite systems are not a new concept, however, and in fact have
been studied since well before the dawn of human space flight. In addition to the various
theoretical studies of T'SS that have been performed in the past, a number of T'SS missions
have already flown in space, providing a solid foundation for the design of future missions
and the further development of the theory underlying the behavior of TSS.

1.1 A Brief History of Tethered Satellite Systems

The concept of a TSS was first proposed by Tsiolkovsky in 1895.° In his work, Tsiolkovsky
proposed a means of generating artificial gravity that involves connecting a spacecraft to a
counterweight with a long chain and spinning the entire system. The length of the tether
in Tsiolkovsky’s study was 0.5 km. The first practical application of a TSS was conducted
during NASA’s Gemini program in the 1960’s.> On the Gemini 11 flight in 1966, the Gemini
spacecraft was connected to the Agena target vehicle by a 30 m tether. The purpose of
connecting the two spacecraft was to test in-space docking maneuvers, as well as to test the
possibility of using a TSS to generate artificial gravity as proposed by Tsiolkovsky. Similar
experiments were also performed on the Gemini 12 flight later the same year.

After the Gemini program, activities related to TSS went relatively quiet for roughly a
decade. In 1975, Colombo et al.'® reignited interest in TSS by proposing a “Shuttle-borne
Skyhook” as a means of performing a wide range of on-orbit scientific experiments. The basic
idea put forth by Colombo et al. was to deploy a probe from the Space Shuttle (which was
still in the development stage at the time) using a 100 km long tether. Assuming that the
Shuttle orbits at an approximate altitude of 200 km, a probe deployed upward along the local



vertical could be used to make electromagnetic measurements in Earth’s magnetosphere, and
a downward deployed probe could be used to make high-altitude atmospheric measurements.
In addition, both the upward and downward deployed configurations could be used to study
the effects of gravity-gradient of large space structures.

Actual missions involving TSS began again in the 1980’s. In the early 1980’s, a joint US-
Japanese effort launched a series of TSS experiments on sounding rockets, known as the
Tethered Payload Experiment (TPE) series.?’ At a particular point in the flight of each
sounding rocket, the payload separated into two pieces connected by a tether. After the
separation, various experiments were conducted related to the electrodynamic properties of
the system. Three different flights were conducted, with successful deployment of the tether
and data collection achieved on each flight. The longest tether deployment was achieved on
the third and final flight in 1983, during which the tether was deployed to a length of 418 m.

The Canadian Space Agency launched the OEDIPUS-A spacecraft in 1989' (OEDIPUS
stands for Observations of Electric-field Distribution in the Ionospheric Plasma-a Unique
Strategy). The purpose of the mission was to use a T'SS to make measurements of Earth’s
magnetic field in the auroral ionosphere. The system consisted of two payloads connected by
a tether, which was deployed to a length of 958 m during the mission. A second spacecraft,
OEDIPUS-C, was launched in 1995.1° The OEDIPUS-C mission has similar scientific goals
as OEDIPUS-A| but also supported the Tether Dynamics Experiment (TDE), which was de-
signed to further develop the theory and computational tools associated with TSS dynamics.
The tether on OEDIPUS-C was deployed to a length of 1,174 km during the mission.

Perhaps the most well-known TSS missions are NASA’s TSS-1 and TSS-1R missions.'® The
TSS-1 mission was launched in 1992, and consisted of an Italian spacecraft deployed vertically
from the Space Shuttle to a distance of 268 m. The spacecraft remained completely deployed
and in a stable configuration for over 20 hours, successfully demonstrating the concept of
long-term gravity-gradient stability of TSS. Following the success of TSS-1, the TSS-1R
mission was launched in 1996. The mission once again consisted of an Italian spacecraft
deployed vertically from the Space Shuttle. The tether was successfully deployed to a length
of 19.7 km, but was unfortunately severed before the entire mission could be completed.
However, during the time before the tether broke numerous experiments were conducted
and measurements were taken that demonstrated the feasibility of using electrodynamic
propulsion with TSS.

Before the TSS-1R mission, NASA’s two Small Expendable Deployer System (SEDS) mis-
sions were used to demonstrate the feasibility of deploying a tether to large distances on-
orbit.’> The SEDS-1 mission was launched in 1993 as a secondary payload on a Delta-II
rocket, and open-loop control was used to deploy a 20 km long tether. The SEDS-2 mission
was launched in 1994, also as a secondary payload on a Delta-II rocket. Unlike SEDS-
1, SEDS-2 used closed-loop control to deploy a 20 km long tether. In both missions, the
tether was completely deployed, demonstrating the feasibility of in-space deployment of long
tethers.



One of the first spacecraft designed to demonstrate the feasibility of electrodynamic propul-
sion of TSS was NASA’s Plasma Motor Generator (PMG) spacecraft,'® which was launched
in 1993. As with the SEDS spacecraft, the PMG spacecraft was launched as a secondary
payload on a Delta-II rocket, and was successfully deployed from the Delta-II to a length of
500 m. Once deployed, the spacecraft made successful measurements of the voltage induced
across the system and the resulting current generated in the tether.

The Tether Physics and Survivability Spacecraft (TiPS) was launched by the Naval Research
Laboratory (NRL) in 1996.'°> Up to that point in time, all TSS missions had been conducted
over relatively short time spans, so the picture of the long-term behavior and survivability of
TSS was still relatively incomplete. The TiPS mission was designed to study these unresolved
issues, and to further the development of the theory of long-term TSS dynamics. The system
consisted of two end bodies connected by a 4 km long tether, which was successfully deployed
once the system was on orbit. The TiPS spacecraft is notable because it consisted of two end
bodies of similar size and mass (dubbed Ralph and Norton), whereas previous T'SS consisted

of an end body connected to a second, much more massive, spacecraft (such as the Space
Shuttle).

Another TSS mission designed by the NRL was the Advanced Tether Experiment (ATEx),*!
which was launched in 1998. The ATEx mission was designed to demonstrate the deployment
and survivability of a new kind of tether design, and to perform various controlled libration
maneuvers. Before ATEx, all tethers had been rope-like in design, and ATEx was to test
a new flat, tape-like tether design. The system consisted of two end bodies and a 6.05 km
long tether. Unfortunately, the tether deployment failed after only 22 m of the tether had
been deployed, at which point the tether was jettisoned from the system. The exact cause
of the failure is not known, but it is known that the tether went slack during deployment,
triggering the jettison of the tether.

One of the most recent TSS missions was the ESA’s Young Engineers Satellite 2 (YES 2),
which was launched in 2007. The YES 2 spacecraft was designed and built entirely by
students and young engineers with the mission objective of deploying a 30 km long tether
and delivering a payload attached to the end of the tether safely back to Earth. A sensor
failure during deployment meant that an accurate measurement of the total deployed length
of tether could not be made; however, a post-mission analysis indicated that the full 30 km
of tether was deployed, making the YES 2 tether the longest tether ever deployed in space.

In addition to the TSS missions described above that have already been conducted, sev-
eral other missions have been proposed for development in the future. Perhaps the most
promising of these proposed missions is NASA’s Momentum eXchange Electrodynamic Re-
boost (MXER) system.®2* The MXER system consists of a roughly 100-150 km long tether
nominally spinning in the plane of a low-Earth orbit. Payloads bound for higher orbits are
launched from Earth via rocket into low-Earth orbit, at which point they are captured by
one end of the spinning tether. At a specified time and location in its orbit, the tether
releases the payload, transferring some of its momentum to the payload and sending it on



a trajectory toward a higher orbit. The loss of momentum by the tether causes its orbit
to decay, and the system uses electrodynamic propulsion to raise its orbit back up to the
desired level. The power required for electrodynamic propulsion is collected by solar panels,
making the system almost completely autonomous and self-sustaining.

1.2 Fundamentals of Spinning and Electrodynamic Teth-
ered Satellite Systems

While a portion of the work presented in this dissertation is applicable to TSS in general,
much of the work is focused on the dynamics and control of spinning and electrodynamic
TSS, with systems such as the MXER system discussed in the previous section serving as the
primary motivation. The proposed configuration of MXER consists of two spacecraft—or end
bodies as they can also be called—connected by a single tether, so we confine our attention
to these types of systems. We do note that many other types of system configurations exist
that consist of three or more end bodies connected in various geometric arrangements using
multiple tethers. The interested reader is referred to Ref. [15] for a more general discussion
of various types of T'SS configurations and their applications.

As mentioned in the previous section, the MXER system is intended to spin in the orbit
plane and utilize electrodynamic propulsion during portions of its operation. In this section,
we present a qualitative discussion of some of the key concepts associated with the dynamics
and control of spinning and electrodynamic two-body TSS. Understanding these concepts,
at least on a qualitative level, is a crucial first step in the theoretical analysis or design of
any TSS. Once again, the reader is referred to Ref. [15] for a more general discussion of TSS
dynamics and control.

1.2.1 Spinning Tethered Satellite System

One of the principal reasons for using a TSS for a given application is that the gravity-
gradient acting over the length of the tether serves to maintain the tether in a tensioned
state throughout the course of its operation. The fact that the tether is tensioned means
that it remains deployed and relatively straight during the operation of the system, with
the tension providing some resistance against tether elastic vibrations induced by external
perturbations. For relatively short tethers or systems consisting of less massive end bodies,
however, the gravity-gradient effect is not as significant, and external perturbations can lead
to the tether becoming slack. A slack tether is typically undesirable, and would most likely
result in the failure of the mission (as occurred in the ATEX mission discussed previously.)

One of the simplest methods of reducing the possibility of the tether becoming slack during
the operation of the system is to spin the system in the orbit plane, thus turning the system



into a spinning T'SS. The spinning motion of the system creates a “centrifugal force” along
the tether that serves to increase the tension in the tether above that of a non-spinning
system, making the tether more resistant to external perturbations that can cause slackness.
The increased tension therefore allows for more flexibility in choosing the length of the tether
and the masses of the end bodies in the system.

The spinning motion of a spinning T'SS also has a number of advantages over non-spinning
systems in addition to the decreased probability of tether slackness. One such advantage is
that the system goes through a much wider range of orientations during its operation than
a non-spinning system. The spinning motion allows the tether to be oriented at any angle
relative to the local vertical, whereas a non-spinning system is constrained to orientations
in the direct vicinity of the local vertical. Spinning TSS can therefore be used to perform
a wider range of scientific measurements over a larger spatial range than their non-spinning
counterparts. Another advantage possessed by spinning TSS is that their spinning motion
can be utilized to perform orbit transfers of satellites. As discussed in relation to MXER
earlier in this chapter, the spinning motion can be used to “throw” a satellite onto a transfer
orbit, thus reducing propellant requirements for the satellite. For all of these reasons dis-
cussed above, spinning T'SS have a much broader range of applicability than non-spinning
systems.

There are several aspects of the dynamics of a spinning TSS that can have a significant
impact on the operation of the system. Understanding these dynamics is a critical part of
the design or analysis of any spinning T'SS. The various aspects of the system dynamics are
illustrated in Fig. 1.1, and include the orbital motion of the system, the motion of the tether,
and the attitude motion of the end bodies.

The orbital motion of the system defines the state of some reference point in the system
relative to the central body. The reference point is typically chosen as the system mass
center, or some convenient point on one of the end bodies. The orbital motion is affected by
a number of different influences, including the gravity of the central body, the distributed
mass of the system, and any external forces acting on the system such as atmospheric drag
and electrodynamic forcing. The relative influence of each of these factors depends on the
specific spinning TSS and its operational regime.

The motion of the tether can be decomposed into two parts, as illustrated in Fig. 1.1. The
first part of the tether motion is a pendular mode that defines the motion of the line con-
necting the ends of the tether. This pendular mode can be thought of as the attitude motion
that the tether would display if it were a rigid rod, and is affected by the mass properties
of the system and the external forces acting on the system. For a typical spinning TSS, the
pendular motion is ideally a rotation in the orbit plane; however, external perturbations will
result in small out-of-plane deviations for the nominal planar motion. The pendular motion
of the tether can therefore be viewed as a combination of an in-plane rotation and small
out-of-plane librations. The second component of the tether motion is the elastic vibrations
of the tether, which can be divided into transverse and longitudinal vibrations. The tether
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Figure 1.1: Ilustrations of the various aspects of spinning TSS dynamics



elastic vibrations are affected by the external forces acting along the tether as well as the
physical and material properties of the tether. Note that the pendular motion and the elastic
vibrations of the tether are coupled, in that neither is independent of the other.

The final component of the system dynamics is the attitude motion of the end bodies, which is
dependent upon the inertia properties of the end bodies and driven by the external moments
acting on the end bodies. A component of the external moment acting on each end body
is due to the tensions applied by any tethers attached to the body, so the attitude motion
of the bodies is affected by the motion of the tether. Likewise, the motion of the tethers is
affected by the attitude motion of the end bodies, because motion of the end bodies affects
the conditions at the ends of the tethers. Similarly, the orbital motion of the system affects
both the tether motion and the attitude motion of the end bodies and vice versa, so all of
the motions of a spinning TSS are coupled to one another. This coupling makes analyzing
the dynamics of a spinning TSS quite difficult, but also means that spinning T'SS dynamics
are quite rich and interesting. One of the principle objectives of the work presented in this
dissertation is to analyze several of the key aspects of spinning TSS dynamics.

1.2.2 Electrodynamic Tethered Satellite System

The primary difference between an electrodynamic TSS and a conventional TSS is that the
tether in an electrodynamic TSS is electrically conductive and intended to carry an electrical
current. The current in the conductive tether interacts with the magnetic field of the central
body, resulting in a distributed force along the length of the tether. This force provides a
form of propellantless propulsion for the system that can be used to affect all aspects of the
system dynamics.

An illustration of a two-body electrodynamic T'SS and the fundamental principles underlying
its operation is shown in Fig. 1.2. At any point in time, a differential tether length element,
df, has a velocity V relative to the local magnetic field vector B. Note that the local magnetic
field vector is generated by the central body. Because the tether is electrically conductive,
its motion relative to the local magnetic field induces an electrical potential across its ends
equal to

<I>:/L(\7><]§)-df (1.1)

where the integration is performed over the length of the tether. The induced potential can
be used to drive an electrical current through the tether, provided that the ends of the tether
are allowed to make electrical contact with the ambient plasma environment. If contact with
the ambient plasma is achieved, a current loop forms through the tether and ambient plasma
as shown in Fig. 1.2. The electrical current at df, which is denoted ¢, then interacts with the
local magnetic field to create a force on dl equal to

dFgp = idl x B (1.2)



The total force acting on the tether is found by integrating Eq. (1.2) over the length of the
tether

P — / idl x B (13)
L

Using the process described above an electrodynamic T'SS can generate propulsion without
the need for any propellant. The force generated by an electrodynamic TSS is inherently
low, but it can nonetheless be used to alter various aspects of the system dynamics.

Central Body

Figure 1.2: Illustrations of the operational principles of an electrodynamic tether system

For Earth-orbiting electrodynamic TSS, the strength of Earth’s magnetic field limits the
operational regime of the system to low-Earth orbit (LEO). At higher orbit altitudes the
magnetic field is too weak to allow for the generation of a useful electrical current, and the
ambient plasma is not dense enough to allow for the reliable formation of a current loop.
In LEO, the system orbits with a velocity greater than that of the local magnetic field, so
v in Eq. (1.1) is roughly in the direction of the system orbital motion. From Eq. (1.1), the
induced voltage across the system is positive, meaning that the end of the tether at a higher



orbit altitude is at a higher electric potential than the end of the tether at a lower orbit
altitude. If a current loop is formed through the tether and ambient plasma, the current is
naturally driven in the direction shown in Fig. 1.2—from the lower end body to the upper end
body. According to Eq. (1.2), the electrodynamic force generated on the tether is therefore
acting in the direction opposite the orbital motion, and serves to decay the system orbit.
However, no power is required to generate the current in the tether because it is driven by
the naturally induced voltage, and the current can therefore be used to charge a power source
if one is placed in the current loop. Because of this fact, an electrodynamic TSS operating
as described above is said to be operating in the “generator mode.” In this operational
mode, electrical energy is gained in the form of a charged power source at the expense of the
mechanical energy of the system.

In addition to being charged if the system is operating in the generator mode, a power source
can be used to reverse the naturally occurring induced voltage such that the lower end body is
at a higher electric potential than the upper end body. The electrical current therefore flows
from the upper end body to the lower end body, and the resulting electrodynamic force is in
the same direction as the system orbital motion. In this case the electrodynamic force serves
as a thrust force that raises the system orbit, and an electrodynamic TSS operating in such
a manner is therefore said to be operating in the “thruster mode.” In this operational mode,
the mechanical energy of the system is increased at the expense of electrical energy in the
form of an applied power source. The discussion presented above applies to electrodynamic
TSS orbiting bodies other than Earth; however, we must note that the generator and thruster
modes can be slightly different for systems orbiting other central bodies, and there can even
be some overlap between the two modes. For example, the magnetic field of Jupiter is still
quite strong at altitudes above its synchronous altitude, so Jupiter-orbiting electrodynamic
TSS can operate above the synchronous altitude. This means that the velocity of the system
relative to the magnetic field is opposite the system motion, and a force in the direction
of the system orbital motion can be generated using the naturally induced voltage. It is
therefore possible for a Jupiter-orbiting electrodynamic TSS to generate a thrust force that
raises the system orbit while simultaneously charging a power source.

As with any TSS, the primary aspects of the dynamics of an electrodynamic TSS are the
system orbital motion, the tether motion, and the attitude motion of the end bodies. The
characteristics of these aspects of the system dynamics are similar to those described for an
spinning TSS in § 1.2.1. With an electrodynamic TSS, however, perhaps the most impor-
tant aspect of the system dynamics is the effect of the electrodynamic force on the various
components of the system motion.

The main effect of the electrodynamic force on the orbital motion of the system is to increase
or decrease the orbit radius, depending on whether the system is operating in the thruster or
generator mode. The change in the orbit radius is slow due to the relatively low magnitude
of the electrodynamic force, but over long enough time scales significant changes in the orbit
radius can be achieved. The electrodynamic force also changes the orientation in space of
the system orbit, but these changes are much slower than the change in the orbit radius.
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The electrodynamic force affects both the pendular and flexible modes of the tether motion.
For local vertically aligned systems, the electrodynamic force drives both in- and out-of-
plane librations of the system about the nominal alignment with the local vertical. For
spinning systems, the electrodynamic force can either increase or decrease the in-plane spin
rate depending on the direction of the force, and also drives out-of-plane librations that
are deviations from the nominal planar spinning motion. Because the electrodynamic force
acts tangent to the tether, only the transverse elastic vibrations of the tether are directly
affected by the electrodynamic force. However, the transverse vibrations are coupled to the
longitudinal vibrations of the tether, so the electrodynamic force affects all aspects of the
tether elastic vibrations.

Th electrodynamic force only acts along the tether, so it does not directly affect the attitude
motion of the end bodies. As with a spinning TSS, however, the end body attitude motion
in an electrodynamic TSS is affected by the tether motion and the system orbital motion,
so the electrodynamic force has an indirect affect on the end body attitude motion.

From the discussions presented in this section it is evident that the dynamics of spinning
and electrodynamic TSS can be quite complicated and rich. The analysis and design of any
TSS mission requires more than the qualitative insights discussed thus far, and the literature
contains a vast amount of detailed analysis of various types of T'SS. In the next section, we
present a review of the most relevant studies related to the dynamics and control of spinning
and electrodynamic TSS.

1.3 Review of Relevant Literature

Dating back to Tsiolkovsky, literally hundreds of studies of TSS dynamics and control
have been published in the literature. Two excellent survey articles on the topic of non-
electrodynamic TSS dynamics and control are those written by Misra and Modi,*! and
Kumar.®® The former article provides a survey of works published prior to 1986, while the
latter provides a survey of works published after 1986.

As mentioned previously, some of the work presented in this dissertation applies to TSS in
general, but we are mostly concerned with the dynamics and control of spinning and elec-
trodynamic TSS, with systems such as the MXER system discussed in §1.1 are our primary
motivation. The proposed configuration of MXER consists of two spacecraft connected by a
single tether, so we confine our survey of the relevant literature to studies that have consid-
ered these types of systems. In addition, we are specifically interested in the dynamics and
control of the system in its operational configuration, meaning that we are not concerned
with deployment or retrieval of the tether. We therefore also confine our review of the rele-
vant literature to studies of systems in their operational configuration. We do point out that
in this section a more thorough review of the literature on electrodynamic TSS is presented
than is presented for other systems. This is due to the fact that several survey articles on
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non-electrodynamic TSS have been published in the past, while no such survey exists for
electrodynamic TSS. We hope that the literature review presented in this section may serve
as a useful introduction to the dynamics and control issues associated with electrodynamic

TSS.

1.3.1 Spinning Tethered Satellite Systems

The literature contains a large number of studies on the dynamics of spinning TSS dating
back to the early years of human spaceflight. The earliest studies of spinning TSS dynamics
were motivated by their possible use for generation of artificial gravity in space. Tai and
Loh% studied the dynamics of a space-station connected to a counterweight by a flexible
cable. The spinning motion of the system was confined to the orbital plane, and numerical
simulations were used to analyze the system dynamics. Chobotov!'? studied a spinning
TSS by modeling the system as two point masses connected by a massless linear spring.
The system mass center remained on an unperturbed circular orbit and the motion of the
system was confined to the orbital plane. Numerical solutions were used to study the system
dynamics. Crist and Eisley'® studied a system similar to that studied by Chobotov, but
included some effects due to orbital eccentricity. A Floquet analysis was used to study the
stability properties of the planar motion of the system.

Stabekis and Bainum® studied a spinning TSS consisting of two finite, rigid end bodies
connected by an extensible, massless tether. As in previous studies, the system mass cen-
ter was constrained to a circular orbit and the motion was restricted to the orbital plane.
The nonlinear equations of motion were linearized about equilibrium configurations and the
Routh-Hurwitz criterion was used to analyze the stability of the planar motion.

Three-dimensional motion of a spinning TSS was considered by Bainum and Evans? using a
model similar to that used in Ref. [60]. However, gravity-gradient effects were not included in
the model, so the motion of the system was torque-free. Bainum and Evans® later extended
their analysis to include the effects of the gravity-gradient torque acting on the system. The
nonlinear equations of motion were linearized about a nominal spin in the orbit plane, and
possible resonances were identified. Some resonances in the attitude motion of the end bodies
were demonstrated using numerical simulations, and all of the simulations indicated small
out-of-plane motion of the tether. A rigorous stability analysis was not performed, although
Floquet theory was suggested.

Another study of the three-dimensional motion of a spinning T'SS was conducted by DeCou.!”
Several system configurations were considered, but all consisted of point masses connected
by massless, fixed-length tethers with the system mass center constrained to a circular orbit.
The system was nominally spinning in a plane with an arbitrary orientation relative to the
orbital frame. Expressions were derived for the accelerations of the end bodies due to the
gravity-gradient, and these expressions were used to derive differential equations governing
the out-of-plane motion of the end masses and the deviation of the spin rate from a nominal
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value. The differential equation governing the out-of-plane motion contained periodic, time-
varying coefficients that were assumed to be negligible to simplify the analysis. The resulting
linear, constant-coefficient differential equation was solved, and the solution for the out-of-
plane motion was a combination of various sinusoidal terms. These solutions assumed that
there was no initial out-of-plane motion, such that the motion remains planar if the desired
spin plane is the orbital plane.

Breakwell and Janssens® studied the transverse vibrations of a two-body spinning TSS by
assuming that the tether is inextensible and that the elastic vibrations of the tether have no
effect on the attitude motion of the tether. The system was assumed to be spinning in the
orbit plane at a rate equal to the orbital rate, and the stability of small transverse oscillations
was analyzed using Floquet theory. The transverse vibrations were found to be unstable for
certain configurations of the system mass distribution, and methods of selecting the masses
of the end bodies that avoid the instabilities are presented.

A rather extensive study of spinning TSS dynamics can be found in the book by Beletsky
and Levin.® Massless and massive tethers are considered, but in all cases the system mass
center is constrained to an unperturbed circular orbit. The planar motion of systems with
massless tethers is completely characterized, and bounds are placed on the possible out-
of-plane motion for non-planar systems. The planar motion of massive tethers is studied
by assuming that the tether is flexible, but the elastic vibrations of the tether do no affect
the pendular motion of the tether. The elastic vibrations are thus superimposed upon the
pendular motion of a rigid tether. In addition, the longitudinal vibrations of the tether are
ignored and only transverse vibrations are considered. A Floquet analysis is used to show
that the transverse vibrations are unstable for certain in-plane spin rates and system mass
properties. The results of this analysis are an extension of those presented by Breakwell and
Janssens,® in that different in-plane spin rates are considered.

Somewhat surprisingly, the literature contains few studies on the control of two-body spin-
ning TSS in their operational configuration. Most studies of the control of two-body spinning
TSS relate to deployment and retrieval of the tether, which is not the focus of the work pre-
sented in this dissertation. The interested reader is referred to Refs. [41] and [30] for more
information of these topics. Most modern studies of spinning TSS control focus on control-
ling large formations of satellites, such as triangular or diamond-shaped configurations. An
excellent reference for work on these types of systems is the book by Levin,?* in which the
dynamics and control of various types of TSS is studied related to specific TSS missions.
As mentioned previously, we are only concerned with two-body systems, so works related to
different spinning TSS configurations are not discussed here.

1.3.2 Electrodynamic Tethered Satellite Systems

Research on electrodynamic TSS is a relatively new branch of TSS research, having only
begun during the past several decades. In general, the research on the dynamics and control



13

of electrodynamic T'SS can be divided into two main categories, each focusing on a particular
aspect of the system dynamics. The first category deals with the change in the system orbit
due to the electrodynamic force, and how the force can be used to control the system orbit.
The second category deals with the motion of the tether and how it is specifically affected
by the electrodynamic force.

Orbital Maneuvering

One of the first studies on the effect of the electrodynamic force on the system orbit was
conducted by Beletsky and Levin.® In their work, Beletsky and Levin considered a two-
body electrodynamic T'SS consisting of point mass end bodies connected by a flexible tether.
The magnetic field of the central body was modeled as a non-tilted, non-rotating dipole.
Approximations of the average rates-of-change of the orbital inclination, right-ascension of
the ascending node, and orbital parameter were derived and analyzed. The average changes
in the inclination and right-ascension of the ascending node were found to be quite small,
even over relatively long time spans. However, over similar time spans the variation of the
orbit parameter was found to be significant, reaching approximately 50 km over 100 orbits
for a typical system.

Tragessear and San®® developed a simple guidance scheme for the orbital motion of a two-
body electrodynamic TSS consisting of two point mass end bodies connected by a rigid
tether. The magnetic field of the central body was modeled as a non-tilted, non-rotating
dipole, and the electrodynamic force was assumed to have a negligible influence on the
tether attitude motion. The system was therefore assumed to remain aligned with the local
vertical throughout its motion such that the orbital motion of the system comprised the only
degrees of freedom. The time-averaged Gauss variational equations were used to develop
guidance laws for the osculating orbit elements of the system mass center, with the variation
of the electrodynamic force achieved by modulating the current in the tether. Numerical
simulations were used to demonstrate the performance of the guidance laws.

The results of Tragessear and San were extended by Williams® to include the effects of the
pendular motion of the tether. Optimal control laws for the osculating orbit elements of the
system mass center were developed using the current in the tether as the control input. The
performance of the optimal control laws was demonstrated using numerical simulations and
compared to the results of Tragesser and San. In certain cases, the inclusion of the pendular
motion of the tether in the guidance scheme led to improved performance over the guidance
scheme that did not include the pendular motion.

Another extension of the work of Tragesser and San was made by Sabey and Tragesser.>*

The attitude dynamics of the tether were included in the system dynamics by assuming that
the attitude was controlled about a nominal periodic trajectory, and a similar procedure as
that used in Ref. [64] was used to determine guidance laws for the osculating orbit elements
of the system mass center.



14

Lanoix et al.3! considered the orbital dynamics of a more complicated and physically realistic

system model than the studies discussed previously. The system consisted of two point mass
end bodies connected by an axially extensible tether. The magnetic field of the central body
was represented using the International Geomagnetic Reference Field model, which expresses
the field in terms of a spherical harmonic series. Aerodynamic and thermal effects on the
dynamics of the tether were also considered in the system model, and numerical simulations
were used to analyze the orbital motion of the system.

A recent study of electrodynamic T'SS orbital maneuvering was conducted by Stevens and
Wiesel.2  As in previous studies, the system was modeled as two point mass end bodies
connected by a rigid tether. The magnetic field of the central body was modeled as a
non-tilted, non-rotating dipole, and atmospheric drag was included in the tether dynamics
model. As in the studies of Tragesser and San and Sabey and Tragessear, the time-averaged
Gauss form of the variational equations for the osculating orbit elements of the system mass
center were considered and used to develop optimal control laws for the orbital motion of
the system. The control laws presented were for maximum final altitude, maximum final
inclination change, and minimum time orbital maneuvers.

Tether Dynamics and Control

Previous studies of the tether dynamics of electrodynamic TSS have typically focused on
either the pendular motion of the system or the elastic vibrations of the tethers. Some
of the earliest studies of the pendular motion of electrodynamic TSS were conducted by
Levin®® and Beletsky and Levin.® In these studies, the system consists of two point mass
end bodies connected by a flexible, massless tether, with the system mass center constrained
to an unperturbed circular orbit. The magnetic field of the central body is modeled as a
non-tilted, non-rotating dipole and the orbit of the system was confined to the plane of the
magnetic equator. The current in the tether is assumed constant throughout the motion.
Because the tether is massless and the system orbit is in the magnetic equatorial plane, the
shape of the tether can be determined at any moment in time such that the tether attitude
angles are the only degrees of freedom of the system. Equilibrium configurations for the tether
attitude angles are determined and their linear stability is analyzed. The stability analysis
shows that the operational equilibrium configurations of a two-body electrodynamic TSS
are always unstable under a constant current. The instabilities are attributed to a constant
pumping of energy into the pendular motion of the tether by nonconservative components
of the electrodynamic force.

The studies of Levin and Beletsky and Levin were extended to electrodynamic T'SS systems
on inclined circular orbits by Pelaez et al.*” In this study, the system consists of two point
mass end bodies connected by a massive, rigid tether, and the magnetic field of the central
body is modeled as a non-tilted, non-rotating dipole. The current in the tether is once again
assumed to be held constant. Unlike the previous studies, the circular orbit on which the



15

system mass center is constrained is allowed to have an inclination relative to the plane
of the magnetic equator. As a result, the electrodynamic force varies periodically with a
period equal to the orbital period, and equilibrium configurations for the tether attitude
can no longer be determined. However, periodic solutions are determined and their stability
is analyzed using Floquet theory. As with systems confined to the magnetic equator, the
periodic solutions of two-body electrodynamic T'SS on inclined orbits are always unstable
under the action of a constant current. The instabilities are once again attributed to a
constant pumping of energy into the system by the electrodynamic force.

Several further extensions of the work in Ref. [47] were performed to consider a much larger
family of periodic tether attitude trajectories?® and systems on elliptical inclined orbits.*® In
each of these studies the tether attitude motion was once again found to always be unstable
due to the same energy pumping mechanism discussed previously.

One of the earliest studies of the elastic vibrations of an electrodynamic TSS was conducted
by Belestsky and Levin.® In this study, the system consists of two point mass end bodies
connected by a flexible, massive tether, with the system mass center constrained to a circular
orbit. The magnetic field of the central body is modeled as a non-tilted, non-rotating dipole
and the system orbit is confined to the plane of the magnetic equator. Planar equilibrium
configurations are determined for the case of constant current in the tether, and the linear
stability of the equilibrium configurations is analyzed. As with the attitude motion of a
two-body electrodynamic TSS in the plane of the magnetic equator, the elastic vibrations
are always unstable under a constant current. The instability occurs in both the transverse
and longitudinal vibrations due to the coupling between those two motions, and is once again
attributed to energy pumping by the electrodynamic force.

The transverse vibrations of a two-body electrodynamic TSS on an inclined circular orbit
were considered by Pelaez et al.*® The magnetic field is modeled as a non-tilted, non-rotating
dipole and the current in the tether is held constant. The transverse vibrations of the tether
are modeled by assuming that the tether is comprised of two articulated rigid rods. Periodic
trajectories for the system dynamics are determined and their linear stability is analyzed
numerically. Two different system configurations are studied: one in which only a portion of
the tether carries an electrical current; and another in which the entire length of the tether
carries an electrical current. For both types of systems, the periodic motions are found to
always be unstable.

Somenzi et al.’ studied the transverse vibrations of a two-body electrodynamic TSS con-
sisting of two point mass end bodies connected by a flexible, but inextensible, tether. The
system mass center is constrained to a circular inclined orbit, and the magnetic field is
modeled using the International Geomagnetic Reference Field model. Some effects on the
current in the tether due to the ambient plasma environment and average solar activity are
also included in the dynamic model. The tether transverse vibrations are expanded in nor-
mal modes, and the system equations of motion are linearized about an alignment with the
local vertical. A linear stability analysis is performed considering only the first two modes
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of the transverse vibrations, and shows that the system is always unstable.

The studies discussed above indicate that the tether dynamics of electrodynamic TSS are
inherently unstable. As mentioned previously, the instability is due to a constant pumping of
energy into the system by non-conservative components of the electrodynamic force. Because
the pendular motion and elastic vibrations of the tether are coupled, any instability in one
aspect of the tether motion is transmitted to the other. The inherent instability in the tether
motion means that successful operation of any electrodynamic TSS requires some means of
controlling both the pendular motion and elastic vibrations of the tether.

Corsi and Iess'* considered the control of the pendular motion of an electrodynamic TSS for
satellite deorbiting applications. The system considered in the study consists of two point
mass end bodies connected by a rigid tether. A Lyapunov function is used to derive a control
law that keeps the in- and out-of-plane motions of the tether within pre-defined bounds, and
the performance of the control law is demonstrated with numerical simulations. The control
law is based on a simple on-off switching of the electrical current in the tether (and thus the
electrodynamic force) that is demonstrated to keeps the tether attitude motion bounded.

Libration control of a system model similar to that considered by Corsi and less was con-
sidered by Pelaez and Lorenzini.?® The system is modeled as two point masses connected
by a rigid tether, and the system mass center is assumed to remain fixed on an inclined
circular orbit. The latter assumption means that the influence of the electrodynamic force
on the orbital motion is considered negligible for the systems and time scales considered in
the study. The magnetic field of the central body is modeled as a non-tilted, non-rotating
dipole. Simple feedback control laws are derived that control the attitude motion of the
tether about periodic trajectories for a constant current in the tether. The control of the
tether attitude motion is achieved by adding “appropriate forces” into the system model, so
no physical mechanism for providing the control inputs is given. Floquet theory is used to
determine stability boundaries that are related to the control gains used in the control laws,
and numerical simulations are used to demonstrate the effectiveness of the control laws.

Williams®” also considered the control of the tether attitude motion about a periodic trajec-
tory. The model considered by Williams is identical to that studied by Pelaez and Lorenzini.?®
Control about the periodic trajectory is achieved by modulating the current in the tether
based on feedback measurements of the system Hamiltonian relative to the Hamiltonian of
the desired periodic trajectory. Stability boundaries are determined using Floquet theory
as functions of the control gain of the control law, and a numerical simulation is used to
demonstrate the performance of the control law.

Zhou et al.™' developed control laws for the tether attitude motion by using the rate-of-
change of the tether length as an additional control input. The system considered consists
of two point mass end bodies connected by a rigid tether, and the magnetic field is modeled
as a non-tilted, non-rotating dipole. Feedback linearization is used to determine control laws
for the tether current and rate-of-change of length that regulate the attitude motion about
the local vertical. Numerical simulations are used to demonstrate the performance of the
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control laws.

A recent study by Williams®® considers the control of the tether attitude motion about
a periodic trajectory using what the author calls “time-delayed predictive control.” The
control of the attitude motion is achieved using modulation of the current in the tether as
the only control input. The system is modeled as two point mass end bodies connected
by a rigid tether. Numerical simulations are used to demonstrate the performance of the
controller for the case of the system constrained to a circular orbit about a central body
with a non-tilted dipole magnetic field. Several numerical simulations are also performed
for systems in which the orbital variations due to the electrodynamic force are included in
the model, and the magnetic field is modeled as a tilted dipole that rotates with the central
body. In these cases, the controller cannot drive the tether attitude motion exactly to the
desired periodic trajectory, but it does stabilize the attitude motion in the sense that the
attitude motion remains bounded and “close” to the desired periodic trajectory for all time.

Equilibrium-to-equilibrium maneuvers of electrodynamic TSS are considered by Mankala
and Agrawal.®® The system model used in the study consists of two point mass end bodies
connected by a rigid tether, with the system constrained to a circular orbit. The magnetic
field of the central body is modeled as a non-tilted, non-rotating dipole and the motion of the
system is confined to the plane of the magnetic equator. Equilibrium configurations for the
planar tether attitude angle are determined, and control laws for the current in the tether
are determined using feedback linearization. These control laws drive the system from one
equilibrium configuration to another, and their performance is demonstrated using numerical
simulations. Another study by Mankala and Agrawal®® considers equilibrium-to-equilibrium
maneuvers of flexible electrodynamic TSS. The system model is identical to that used in
Ref. [35], with the exception that the tether is modeled as flexible, but massless. Once
again, feedback linearization is used to derive control laws that drive the system from one
equilibrium configuration to another.

All of the studies of electrodynamic T'SS control discussed to this point have only considered
control of the pendular motion of the tether. However, several studies have also considered
control of the elastic vibrations of the tether. Beletsky and Levin® considered tether vibration
control of a system consisting of two point mass end bodies connected by a flexible tether.
Control laws based on modulations of the current in the tether were determined that regulate
small tether elastic vibrations about a nominal equilibrium configurations. These control laws
are determined assuming that the magnetic field of the central body is a nontilted dipole,
and that the motion of the system takes place entirely in the plane of the magnetic equator.

Hoyt?? develops two different feedback control laws for the elastic vibrations of a two-body
electrodynamic TSS. The first control method is based on measurements of the position of
the tether at various points along its length. These measurements are made by beacons
that must be attached to various points along the tether. The second control method does
not require any knowledge of the tether motion, and only requires knowledge of the relative
acceleration of the end bodies. Numerical simulations are used to demonstrate that the
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control laws are successful in stabilizing the tether elastic vibrations over relatively long
time spans.

Watanabe et al.%® use input shaping to control the elastic vibrations of a two-body electro-
dynamic TSS. A lumped mass model in which the tether is modeled as a finite number of
point masses connected by springs is used to account for the flexibility of the tether. The
magnetic field is modeled as a non-tilted, non-rotating dipole and the system mass center is
constrained to a circular orbit in the plane of the magnetic equator. Numerical simulations
are used to demonstrate that the control method is successful in reducing the amplitude of
the tether elastic vibrations relative to those seen in an uncontrolled system.

Control of a continuum tether model is considered by Williams et al.”> The electrodynamic
TSS considered in this study is a two-body system with the system mass center constrained
to a circular orbit. The magnetic field of the central body is modeled as a non-tilted, non-
rotating dipole. Control laws are developed for the tether transverse vibrations by assuming
that the transverse vibrations are governed by the linear, one-dimensional wave equation and
applying principles of wave-absorbing control design. The control is applied by movement
of the tether attachment point at one of the end bodies. The transverse vibration control
is combined with a tether pendular control law to provide complete control of the tether
motion. The performance of the control is demonstrated using numerical simulations for
stationkeeping, deployment, and retrieval of the tether.

1.3.3 Spinning Electrodynamic Tethered Satellite Systems

A number of studies contained in the literature consider two-body TSS that are both spin-
ning and utilizing electrodynamic propulsion. Pearson et al.** proposed using spinning
electrodynamic TSS for orbital maneuvering and showed that they can generally provide
much greater performance than local-vertical aligned systems. Several minimum-time or-
bit maneuvers utilizing spinning electrodynamic T'SS were also computed and demonstrated
numerically.

Williams® studied spinning electrodynamic TSS orbital maneuvering by considering a sys-
tem consisting of two point mass end bodies connected by a rigid tether. The magnetic field
of the central body was modeled as a non-tilted, non-rotating dipole, and the entire system
was assumed to spin at a constant rate in the orbital plane. This last assumption means that
the effects of the electrodynamic force on the attitude dynamics of the tether are neglected.
The methods used by Tragesser and San are used to develop guidance laws for the system
orbital motion, and numerical simulations are used to demonstrate the performance of the
guidance laws. As done by Pearson et al., Williams concluded that spinning electrodynamic
TSS are generally more effective orbit transfer vehicles than vertically aligned systems.

A relatively detailed study of the dynamics and control of two-body spinning electrodynamic
TSS is contained in the book by Levin.3* In this work, the system is modeled as two point
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mass end bodies connected by a massive, flexible tether. The basic operation of the system
is analyzed by determining how the electrodynamic force varies as the system spins, and
how the current in the tether can be modulated to produce a net force in a desired direction.
The evolution of the spin rate and axis of the system due to the electrodynamic force and
gravity-gradient torque is also considered. Levin finds that an appropriate modulation of
the current in the tether can eliminate any average effects that the electrodynamic force has
on the system spin rate, and the spin axis is only affected by the gravity-gradient torque if
the spin plane is not the same as the orbit plane.

Small transverse vibrations of the tether in the two-body spinning electrodynamic TSS are
also considered by Levin. The rotation of the system is assumed uniform in this study,
and the effects of the gravity-gradient are neglected. The primary result of the study is that
spinning electrodynamic T'SS are preferable to vertically aligned electrodynamic T'SS because
they can operate at higher thrust levels due to the fact that the tether is in a higher state
of tension. Because the tether is at a higher tension, it is more resistant to external forces,
and can thus be exposed to larger magnitude electrodynamic forcing without “inducing any
catastrophic dynamic responses.”

The final area of two-body spinning electrodynamic TSS dynamics and control considered
by Levin is that of orbital maneuvering. A current scheduling procedure is introduced that
allows for maximum orbit boost, orbit de-boost, and rotation of the orbit plane. Methods
of performing the fastest possible in-plane orbit transfers and orbit plane changes are also
analyzed.

1.4 Contributions of the Present Study

Although a great deal of research has already been conducted on the dynamics and control
of spinning and electrodynamic TSS, including numerous studies on spinning and electrody-
namic T'SS, there exist a number of topics that remain to be addressed. The purpose of this
dissertation is to address several of these open areas of study, and in this section we present
an overview of the original contributions made by this work.

1.4.1 Validation of Computational Models

In the literature review presented in the previous section a fair amount of attention was paid
to the various modeling assumptions used to analyze the given TSS. Any TSS is a fairly
complicated physical system, and as the literature review shows, it is common practice to
use greatly simplified system models to study the dynamics and control of the system. The
mathematical models associated with these simplified models are often relatively simple,
and in many cases lend themselves to a rigorous analytical treatment. This practice of using
simplified models is entirely justifiable, because the analysis of a system model that takes
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into account every conceivable aspect affecting the system dynamics would be completely
intractable, even using numerical analysis techniques. However, the validity and practical
applicability of results obtained using simplified system models should not be taken for
granted. It is entirely possible that the assumptions implicit in the simplified models remove
critical aspects affecting the behavior of the system such that the predictions made by these
models have no resemblance whatsoever to the behavior of the actual physical system.

In an ideal situation, results obtained using simplified system models would be compared to
experimental data to test their validity. If the results compare favorably to the experimental
data according to some objective metric, then the results are said to be validated. The
experimental data used in the validation process is typically only available for a small subset
of the intended operational regime of the actual physical system, and the validated results
obtained from the simplified system model are used to make predictions about the behavior
of the system for cases in which experimental data is not available. This type of process
is commonly used in fields such as fluid and solid mechanics in which experimental data is
readily available.

Unfortunately, the above described process cannot be applied to results obtained related to
TSS dynamics and control because experimental data is virtually nonexistent. This means
that no results can be truly validated at the current point in time; however, it does not
mean that some form of validation cannot be performed. In this dissertation we propose a
method of validating results obtained from simplified system models when experimental data
is not available, as in the case of a T'SS. The validation procedure requires the construction
of what we term a “top-level system model,” and an associated “top-level computational
model.” The top-level system model is a model of the system containing as few simplifying
assumptions as possible. It is intended that this model capture all of the relevant behaviors of
the system, but can still be analyzed in a practical way. The top-level computational model
contains all of the tools used to make predictions about the behavior of the system using the
top-level system model. Because of the complicated nature of the top-level system model,
the predictions made by the top-level computational model are in the form of numerical
solutions which take the place of experimental data. All results obtained using simplified
system models are compared to the predictions made by the top-level computational model
as a means of validation. If the results do not compare favorably, then the simplified system
model must be altered in some way so that it compares more favorably to the predictions of
the top-level computational model.

In addition to the proposed computational model validation procedure, one of the major
contributions of this work is the development of a top-level computational model that can
be used to perform validation of results obtained using simplified system models. This model
is developed with spinning and electrodynamic T'SS specifically in mind; however, the model
can be applied to a variety of other types of T'SS as well. Most likely because of the lack of
experimental data, validation of results obtained using simplified system models is seldom,
if ever, performed in the field of T'SS dynamics and control. It is the hope of the author that
the validation method proposed in this work, combined with the availability of the top-level
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computational model presented in this work, makes it much easier for other researchers to
validate their results and better gage their practical applicability.

1.4.2 Verification of Computational Models

Because the numerical solutions produced by the top-level computational model act in place
of experimental data in the validation method we propose, the accuracy of the computer
codes written to produce the numerical solutions must be rigorously verified. Errors in these
codes, no matter how small, will lead to inaccurate numerical solutions that can be used to
make false claims about the validity of a result obtained from a simplified system model. The
method we use in this work to verify the computer codes written for the top-level computa-
tional model is the method of manufactured solutions, which is more commonly used in the
fields of fluid and solid mechanics. To the author’s knowledge, this work constitutes the first
instance in which the method of manufactured solutions is used to verify the computational
model of a TSS. We believe that the work presented herein demonstrates the relative ease
with which the method is applied to a TSS, and we hope that this work encourages other
researchers in the field of TSS dynamics and control to apply the method to their work
whenever applicable. Verification of computational models is another practice that is un-
common in TSS dynamics and control research, and we believe that this work demonstrates
its necessity.

1.4.3 Dynamics of Spinning Tethered Satellite Systems

As discussed in §1.3.1, most of the previous research on the dynamics of spinning T'SS has
used simplified system models in which the out-of-plane pendular motion of the tether is
neglected. A typical spinning T'SS nominally spins in the orbit plane, so it is reasonable to
neglect the out-of-plane motion in a preliminary study of spinning TSS dynamics; however,
a complete picture of spinning T'SS dynamics requires a rigorous analysis of the out-of-plane
pendular motion of the system. Such an analysis is one of the main contributions of this
work. A simplified system model is used to study the stability of small out-of-plane pendular
motion of the tether, and to determine approximate solutions for stable out-of-plane pendular
motion. These results obtained using a simplified system model are validated using numerical
solutions determined using the top-level computational model.

The transverse vibrations of the tether in a spinning T'SS are also studied using a simplified
system model, and conditions for unstable transverse vibrations are determined. These
results on the stability of spinning T'SS transverse vibrations are not an original contribution,
as they duplicate results obtained in Refs. [5] and [8]. The original contribution made in
this work is the application of the model validation procedure to these results. We use the
procedure to show that the instabilities predicted by the simplified system model are not
predicted by the top-level computational model, meaning that the results obtained using
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the simplified model cannot be used to make predictions about an actual spinning TSS.
We also present an analysis of the reasons behind the lack of agreement with the top-level
computational model, and propose ways in which the simplified system model can be changed
to yield better agreement with the top-level computational model.

1.4.4 Control of Spinning Tethered Satellite Systems

In addition to the thorough analysis of the pendular motion of the tether in a spinning
TSS, we also consider several methods of controlling the pendular motion. As discussed in
the literature review in §1.3.1, the literature contains surprisingly few studies on control of
spinning TSS, most likely because all TSS that have flown to date have been local-vertically
aligned systems. The control analysis presented in this work therefore constitutes an original
contribution to the field of spinning T'SS dynamics and control. A simplified system model
is used along with several nonlinear control design techniques to derive control laws that
allow the pendular motion of the tether to track a desired planar reference motion. Two of
the control laws we develop are based upon principles of sliding mode control, which allow
for tracking of a reference trajectory in the presence of unmodeled dynamics (which are
certainly present for a simplified system model). Several of the control laws are applied to
the top-level computational model to assess their effectiveness and feasibility when applied
to a more physically realistic system model.

1.5 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Ch. 2, we present some funda-
mental concepts of system modeling, along with the validation procedure that we propose for
use on systems for which experimental data is not available. The top-level system model used
in the validation procedure is presented in Ch. 3. All aspects of the top-level system model
are thoroughly developed, and several examples of the output of the top-level computational
model are presented. A detailed dynamic analysis of the motion of the tether in a spinning
TSS is presented in Ch. 4. The analysis makes use of a lower-level system model so that a
number of analytical results pertaining to both the pendular motion and elastic vibrations
of the tether can be determined. All of these results are compared to numerical solutions
obtained using the top-level computational model to assess their applicability to an actual
TSS. In Ch. 5, various methods of controlling the pendular motion of the tether in a spinning
TSS are investigated, including the possibility of controlling the pendular motion using only
electrodynamic forcing. The control law developments in Ch. 5 make use of a lower-level
computational model, although several of the control laws take into account the effects of
unmodeled dynamics. Several of the control laws are applied to the top-level computational
model to assess their performance on a more realistic system model. Concluding remarks
and recommendations for future work are offered in Ch. 6.



Chapter 2

Validation of Computational Models

In this chapter we present a procedure for validating the predictions made by computational
models when experimental data is not available, as in the case of a T'SS. Many of the concepts
and much of the terminology presented in this chapter are adapted from the material in
Refs. [43] and [51]. We first present some fundamental concepts related to modeling of
physical systems and model validation as motivation for the development of the procedure.
The validation procedure is then outlined in detail, and we discuss how it is applied to
the work related to the dynamics and control of TSS presented in the remainder of this
dissertation.

2.1 Fundamental Concepts of System Modeling

The first step in the analysis of any physical system is the careful and thoughtful development
of a system model. The system model is the vehicle through which an actual physical system
is represented by a form that is suitable for scientific and engineering analysis. The wise and
careful development of the system model can result in the gain of a great deal of insight into
the behavior of the physical system, while a poor or uninformed development of a system
model can lead to incorrect predictions and erroneous results.

The various aspects of any system model can be arranged in the hierarchy shown in Fig. 2.1.
At the top of the hierarchy sits the actual physical system that is being considered. The
physical system consists of real components and hardware operating in a real physical envi-
ronment. As an example, the work presented in this dissertation is focused on the dynamics
and control of spinning and electrodynamic TSS, so the physical system for any system
model we consider could be MXER, or any other similar TSS. Below the physical system
in the hierarchy are the three elements that make up the system model: 1) the conceptual
model; 2) the mathematical model; and 3) the computational model. The objective of devel-
oping the system model is to produce accurate predictions about the behavior of the actual
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physical system, as illustrated in Fig. 2.1. In the remainder of this section we discuss the
role of each of the three separate elements in the system model.

Y

Physical System

Conceptual Model

[ Predictions ]

A

A

A

Computational Model

| |
| |
| |
| |
| |
| Mathematical Model | System Model
| |
| |
| |
| |
| |

Figure 2.1: Diagram of the system modeling hierarchy

2.1.1 Conceptual Model

The conceptual model is an abstraction of the physical system that is used to study a
particular behavior or behaviors of the system. Because every detail of the physical system
cannot be considered in the conceptual model without it becoming prohibitively complex,
the features of the physical system deemed to have a negligible influence on the behaviors
of interest are not included in the conceptual model. These features can be related to the
physical components of the system or the physical environment. In this sense, the conceptual
model is a collection of assumptions about the physical system that removes all features that
have, or are believed to have, an insignificant influence on the behaviors of interest.

The conceptual model is an idealization of the physical system that is suitable for scientific
and engineering analysis. Note that there is a great deal of freedom involved in creating a
conceptual model for a given physical system. The validity of various assumptions is open
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to a great deal of debate, and two different “experts” can come up with two very different
conceptual models that are intended to model a specific behavior for an identical physical
system.

2.1.2 Mathematical Model

The mathematical model is a set of mathematical equations that govern the behavior of the
conceptual model. These equations can consist of differential equations and algebraic rela-
tionships. The mathematical model includes the equations of motion for all of the degrees of
freedom associated with the conceptual model, along with any required constitutive relations.
It is important to note that the mathematical model gives a mathematical description of the
conceptual model, not the physical system. However, the conceptual model is intended to be
a sufficiently accurate approximation of the physical system, so it is also intended that the
mathematical model provides a sufficiently accurate description of the physical system. The
mathematical model does not include any exact or approximate solutions to the equations
governing the behaviors of the system being studied, and only consists of the governing equa-
tions themselves; however, the mathematical model can include solutions to any aspects of
the system motion that are constrained by the assumptions implicit in the conceptual model.
For example, constraining a system to follow an unperturbed circular orbit provides a “solu-
tion” to the orbital motion that is included in the mathematical model. Any solutions to the
governing equations for the behaviors of interest are contained in the computational model.

2.1.3 Computational Model

The computational model consists of all of the tools used to analyze the mathematical model,
and thus make predictions about the behavior of the physical system. In this sense, the
computational model is the key component of the system model, because its output is actually
applied to the physical system. For system models with relatively simple mathematical
models, the computational model can contain, or consist entirely of, exact or approximate
analytical solutions to the governing equations. For most system models, however, the
associated mathematical model is relatively complicated and does not allow for any form of
analytical treatment. In this case, the computational model consists of the tools required
to produce approximate numerical solutions of the governing equations. These tools include
a discretized form of the governing equations along with any computer codes used to solve
these discretized equations. Note that the governing equations are often partial differential
equations, so a temporal and a spatial discretization scheme must be used to form the
discretized equations of motion.

If the computational model contains computer codes used to produce approximate numerical
solutions to the governing equations, then the accuracy of these computer codes must be
rigorously verified before the numerical solutions can be used to make predictions about
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the behavior of the physical system. Recall that the computer codes produce approximate
numerical solutions to a discretized form of the governing equations. The verification of the
computer codes involves demonstrating in some way that they produce numerical solutions
that approach the true solution of the governing equations as the discretization level is
refined. There are numerous different verification methods that can be applied to a computer
code depending on the form of the discretized equations; however, the important point is
that the accuracy of the codes must be verified before their outputs can be used to make
predictions about the physical system.

One final important point to make about the computational model is that there is no guar-
antee that it will produce accurate predictions of the behavior of the physical system. The
code verification process is purely mathematical, and only tests whether the computer codes
produce accurate solutions to the governing equations contained in the mathematical model.
The assessment of the accuracy and predictive capability of the computational mode is called
validation. The relationship between code verification, computational model validation, and
the various components of the system model is illustrated for an ideal situation in Fig. 2.2.
In this ideal situation, experimental data collected on the actual physical system, or on a
scale model of the actual physical system, is used to validate solutions produced by the
computational model. If there is acceptable agreement between the computational solutions
and the experimental data, then the model is validated and can be used to make predictions
about the behavior of the physical system. If the computational solutions do not agree with
the experimental data to an acceptable degree, than the model is not validated, and a new
system model must be developed starting with a new conceptual model of the physical sys-
tem. The results of the validation procedure can be used to determine in what ways the
conceptual model must be altered to produce better agreement between the output of the
computational model and the experimental data. For some physical systems, such as a TSS,
experimental data is not available, and the above described situation cannot be used to val-
idate the computational model. In the next section, we propose a procedure for validating
computational models in the absence of experimental data.

2.2 Validation of Computational Models in the Ab-
sence of Experimental Data

When experimental data is not available we must resort to some other means of validating a
computational model. The validation procedure proposed in this dissertation is illustrated
in Fig. 2.3. In place of experimental data we define a “top-level” system model and all
of its corresponding components. The solutions produced by the top-level computational
model serve as the actual replacement of the experimental data. The top-level system model
contains as few simplifying assumptions as possible, and is assumed to accurately capture
all of the relevant behaviors of the physical system. Because of the nature of the top-level
system model, its associated mathematical model will be quite complicated, and the com-
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putational model consists entirely of tools used to generate approximate numerical solutions
of the mathematical model. It is important to note at this point that the top-level system
model cannot be so complicated as to render the generation of numerical solutions using the
computational model impractical. These numerical solutions serve as the replacement for
experimental data, so it is imperative that they can be generated in a reasonable amount of
time. We must also note that the computer codes used to generate the numerical solutions
for the top-level computational model must be rigorously verified. Because these solutions
serve as the basis for validation tests, there can be no doubt that they are accurate solutions
of the top-level mathematical model.

The complicated nature of the top-level system model makes it necessary to develop other,
less complicated, system models. As shown in Fig. 2.3, we call these simplified system models
“lower-level” system models. Any lower-level system model can be viewed as a simplification
of the top-level system model in that the lower-level model is developed using assumptions
in addition to those used to develop the top-level model. Note that all of the assumptions
used to develop the top-level system model must also be used to develop the lower-level
system model. The primary reason for developing a lower-level system model is that the
simplified nature of the lower-level model makes analysis using its computational model
much easier and more practical than analysis using the top-level computational model. In
fact, the lower-level computational model may contain analytical solutions that can be used
to make predictions about the behavior of the physical system for the entire range of system
physical parameters. In any case, being able to make predictions about the behavior of the
physical system using a lower-level system model is almost always preferable to using the
top-level system model due to the relative simplicity and ease of analysis using the former.
Most of the previous research on TSS dynamics and control presented in §1.3 is based on
the analysis of lower-level computational models.

Because they are based on simplified system models, the results obtained from any lower-
level computational model may or may not be applicable to the actual physical system. In
the absence of experimental data, the applicability of these results is tested by comparing
them to numerical solutions generated using the top-level computational model. If the
predictions made by the two computational models are in acceptable agreement, then we
consider the lower-level computational model validated and its predictions can be applied
to the actual physical system. If the predictions made by the two computational models
are not in acceptable agreement, then the lower-level computational model is not validated.
In this case, we must use the results of the validation test to alter the lower-level system
model such that the predictions made by its computational model are in better agreement
with those made by the top-level computational model. This process is repeated until the
two models are in sufficient agreement, at which point the lower-level computational model
is validated and can be used to make predictions about the actual physical system.

At this point we must stress the relative importance of the top-level system model in the
validation procedure that we propose. The fundamental idea underlying the use of the
top-level system model in place of experimental data is that it is a sufficiently accurate
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representation of the actual physical system. A poor choice of the top-level system model
therefore throws off the entire process, and makes any conclusions related to the validity of
lower-level computational models practically meaningless. This is one of the main weaknesses
of the proposed validation procedure. Another weakness of the procedure is that there is
no way to test the validity of the top-level system model. Even a fairly complicated top-
level model may not capture all of the relevant behaviors of the actual physical system,
and there is no way to determine whether this is the case because there is no experimental
data available with which to validate the top-level computational model. Despite these
weaknesses, we believe that the validation procedure proposed in this chapter is the best
way of performing some means of validation on results obtained from simplified system
models when experimental data is unavailable.

2.3 Application of the Proposed Validation Procedure

In the remaining chapters of this dissertation, the validation procedure proposed in this
chapter is applied to various problems related to T'SS dynamics and control. The top-level
system model and all of its components are developed in Ch. 3, in which we also verify
the accuracy of the computer codes used to produce the numerical solutions for the top-
level computational model. In Chs. 4 and 5, we derive a number of results related to TSS
dynamics and control using lower-level system models. The validity of all of these results is
examined by applying the validation procedure presented in this chapter.



Chapter 3

Top-Level System Model

In this chapter we present the various components of the top-level system model used in
this work to study the dynamics and control of spinning and electrodynamic TSS. The
modeling assumptions that comprise the conceptual model are presented and discussed, and
the mathematical model that describes the system dynamics is derived. The mathematical
model contains partial differential equations that govern the elastic vibrations of the tether,
and two different computational models based on different methods of spatially discretizing
these partial differential equations are developed. The first computational model is based
on the assumed modes method, and the second is based on the finite element method. The
method of manufactured solutions is used to verify both of the computational models, and the
two models are compared to determine which is better suited to spinning and electrodynamic
TSS dynamics and control applications. We conclude the chapter by presenting two examples
of the output generated by the top-level computational model: 1) an example for a spinning
TSS; and 2) an example for an electrodynamic TSS!.

3.1 Physical System and Conceptual Model

The physical system under consideration is a TSS in orbit around an arbitrary central body.
The system consists of two end bodies connected by a single tether. The central body has
a magnetic field, and the tether is conductive and capable of producing and electrodynamic
force.

Several modeling assumptions are made related to the physical environment of the system.
We first assume that the central body is spherical with a homogeneous mass distribution,
and therefore acts as a point mass. By making this assumption we are assuming that
the Newtonian component of the gravitational field of the central body is the dominant

!The material presented in this chapter is also presented in Ref. [18].
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component, and all of the higher-order components of the field due to the non-spherical
shape and non-uniform mass distribution of the central body have a negligible influence on
the system dynamics. We next assume that the magnetic field of the central body is a tilted
dipole that is centered at the center of the central body and fixed to the central body as
it rotates. This assumption means that we are considering any higher-order harmonics of
the magnetic field of the central body to be negligible relative to its dipole component. The
final environmental assumption we make is that the gravitational force of the central body
and the electrodynamic force acting on the tether are the only external forces acting on the
system. By making this assumption, we are assuming that all other external forces other
than the gravity of the central body and the electrodynamic force, such as atmospheric drag
and solar radiation pressure, have a negligible influence on the system dynamics.

The modeling assumptions related to the actual TSS are as follows. Both of the end bodies
in the system are treated as finite rigid bodies, meaning that any elastic vibrations that they
undergo during operation are considered negligible. Because the tether in a typical TSS is
long and thin, we model the tether as an elastic string that can only resist axial stretching.
This assumption implies that the tether cannon support any amount of compression, and
has negligible bending and torsional stiffness.

3.2 Mathematical Model

Using the modeling assumptions outlined above we develop the mathematical model for the
dynamics of the top-level system model. A diagram of the system is shown in Fig. 3.1. The
end bodies are denoted A and B, where A is the primary end body and B is the secondary
end body. The mass centers of A and B are denoted G4 and Gp, respectively. The tether
attaches to A at the point P4, and attaches to B at the point Pg. The center of the central
body is denoted O, which is taken as an inertial point.

Because A is the primary end body, the state of A is used to represent the orbital motion of
the system. The state of A is parameterized using a set of osculating classical orbit elements

e:(aeQIwu)T (3.1)

where a is semimajor axis, e is eccentricity, €2 is right-ascension of the ascending node
(RAAN), I is inclination, w is argument of periapsis, and v is true anomaly. At any moment
in time, e defines an instantaneous Keplerian orbit, known as the osculating orbit, that can
be used to determine the position and velocity of GG 4 relative to O. Let ¥y be the position of
G 4 relative to O. The position of P4 relative to G4 is denoted p,. Let ds be a differential
tether length element located at an arclength s along the tether measured from P4, and let
I be the position of ds relative to P4. The position of Pg relative to G is denoted pg.
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Figure 3.1: Diagram of top-level system model

3.2.1 Coordinate Frames and Kinematics

Let Fn be the inertial frame with coordinate axes n;. Note that Fy is centered at O, as
shown in Fig. 3.1. The nj axis is aligned with the spin axis of the central body, and the
n; — ny plane is the same as the equatorial plane of the central body. For Earth-orbiting
systems, a logical choice for Fn would be the Earth-centered inertial frame; however, any
desired inertial coordinate frame can be used for Fy.

Let Fo be the orbital frame of the osculating orbit of G4 with coordinate axes 0;. The 03
axis points from O to G4, 05 is in the direction of the instantaneous angular momentum
vector of the osculating orbit, and 6; completes the right-handed triad. The inertial frame
is transformed into the orbital frame by performing a 3-1-3 Euler rotation sequence through
the angles €2, I, and 6 = w + v, followed by a permutation to align the coordinate axes in
the proper directions. The direction cosine matrix (DCM) that maps Fy to Fo is

—cos2sinf — coscosfsinf? coslcosfcos)—sinfsinf) cosfsinl
RON = sin / sin —cos Q2sin [ cos [ (3.2)
cosf@cos§) —cosIsinfsin) coslcos)sinf + cosfsinf) sinlsinf
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The angular velocity and acceleration of Fp relative to Fy are

Wo/N = —35 02

. B 2uesiny
Wo/N = _—7”,%1 02 (3.4)
= 00,
where p is the gravitational parameter of the central body, and the quantities p and r4 are
defined as

p = a(l—é?) (3.5)
p
= — £ 3.6
A 14 ecosv (36)
Note that p is the orbital parameter of the osculating orbit, and r4 is the instantaneous orbit

radius of Gy4.

Let F4 be a body-fixed principal coordinate frame for A, with coordinate axes a;. Similarly,
let Fp be a body-fixed principal coordinate frame for B, with coordinate axes b;. The
orientations of F4 and Fp relative to Fp are defined using the quaternions

T
q4a2  4A3 C]A4)

= ( qa1
(3.7)
= ( dr  qas )T
as= (qs1 s> s aqm )’ (3.
= ( q qB4 )T
Note that a quaternion is defined as
q = ( a' @ )T (3.9)

4 = asin (2) (3.10)
G = cos @) (3.11)

where a contains the components of the unit principal rotation axis and & is the principal
rotation angle. We choose a quaternion to parameterize the orientation of both F, and Fp
relative to Fp because we want the mathematical model to be valid for arbitrary attitude mo-
tion of the end bodies. Because a quaternion is a nonsingular attitude parameterization, we
do not have to place any bounds on the end body attitude motion to avoid the mathematical
singularities associated with singular attitude parameterizations, such as Euler angles.
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The DCM for a general quaternion is

R =(¢i —q'q)l +2qq" — 2¢.q" (3.12)

where 1 is the identity matrix and

0 —q3 42
q* = g3 0 —q (3.13)
- —q¢ 0

The DCMs that map Fop to F4 and Fp to Fp are therefore

R = (¢ — aiaa)l + 24,48 — 29444} (3.14)
R = (¢} — apap)1 + 2apay — 2gp4qs (3.15)

respectively. Let Wy 0 be the angular velocity of F4 relative to Fo, and let wy /o contain the
components of & /o expressed relative to F4. Similarly, let &g/ be the angular velocity of
Fp relative to Fo, and let wp/o contain the components of Wg,o expressed relative to Fg.
The time derivatives of q, and qg can then be expressed as

. 1,_
qz = §B(QA)‘*’A/O (3.16)
N 1_
ag = §B(qB)wB/O (3~17)
where y
_ + qu1
B(q) = {q_qg“ } (3.18)

Let Fg be a tether-fixed coordinate frame with coordinate axes €;. The orbital frame is
transformed to Fg by performing a 2-1 Euler rotation sequence through the angles o and
—(, as shown in Fig. 3.2. The DCM that maps Fp to Fg is

Cos 0 —sin o
RF° = | —sinasinf cosf —cosasinf (3.19)
sinacos(3  sinf8 cosacosf

and the angular velocity of Fg relative to Fo is
W0 = (&1 + ¢ cos &, + v sin fé; (3.20)

The axis €3 points from P4 to Pp such that Fg defines the orientation of the undeformed
tether line relative to Fp. The angles a and [ can therefore be viewed as the in- and out-
of-plane attitude angles of the tether relative to Fo. The evolution of @ and 3 over time
defines the pendular mode of the tether motion.
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O3

Figure 3.2: Diagram illustrating orientation of Fg relative to Fo

3.2.2 Tether Geometry and Constitutive Relation

Recall that a differential tether length element, ds, is located an arclength s along the tether,
measured from Py, and the vector r defines the position of ds relative to P4. The vector r is
a function of both time and s, so ¥ = (s, ). As the tether vibrates and deforms, s changes
as the length of the tether expands and contracts. We would like to avoid defining r using
a time-varying spatial coordinate like s, so we must define a new spatial coordinate that is
time-independent.

The time-independent spatial coordinate that we use is the unstretched arclength, 5. The
relationship between s and 5 is illustrated in Fig. 3.3. When the tether is unstretched it
lies entirely along the e3 axis, and an unstretched differential length element, ds, is located
an unstretched arclength s from P4. The unstretched length of the tether is L, such that
s € [0, L]. When the tether stretches and deforms, it no longer lies along é3, and its length
deviates from L. The unstretched element ds becomes the stretched element ds, and the
position of ds relative to ds is u. The displacement of ds from its unstretched state can be
expressed as a function of s, so U = u(s,t), and we have

r(s,t) = sé3 + u(s,t) (3.21)

The expression for ¥ given by Eq. (3.21) is in terms of independent spatial and temporal
domains, so it is in the form we desire. The displacement vector i can be conveniently
expressed relative to Fg as

u=U(s,t)e, + V(s t)es + W (s, t)és (3.22)
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where U and V' are the transverse displacements of the tether, and W is the longitudinal
displacement of the tether. Using Eq. (3.22), we can express I relative to Fg as

r(5,t) =Ué + Ve + (5 +W)es (3.23)

Figure 3.3: Diagram illustrating the relationship between the unstretched and stretched
tether

The unit tangent vector at any point along the tether is defined as

. O1(s, t)
t) = 3.24
P, t) = (324
Rewriting Eq. (3.24) as a function of 5, we obtain
. Or(s,t) 0s
= = 3.25
#(5,0) = o (325)
Because T is a unit tangent vector, it must be true that
Os or(s,t)
— = ||— 3.26
s ‘ s H (3:26)
The strain in the tether is defined as
ds — ds
M
99 (3.27)
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Using Eq. (3.26), the strain at any point in the tether is expressed as a function of § as
or(s,t)
05

e(5,t) = ‘

H . (3.28)
Differentiating Eq. (3.28) with respect to time, the strain rate at any point along the tether

is expressed as a function of 5 as

B 1
C1+4e

£(5,1) (3.29)

OF(s,t) OF(s,1)
95 05

The tension in the tether is modeled using the linear Kelvin-Voigt law of viscoelasticity,
which expresses the axial stress in the tether, o, in terms of the strain and strain rate as

o= (e + c2) (3.30)

where F is the Young’s modulus of the tether material and c is a structural damping constant.
Because the tether is modeled as an elastic string, the tension is only due to the axial stress,
and is given by

T =FEA(e+ c£) (3.31)

where A is the cross-sectional area of the tether. Note that T = T'(5,t) because the strain
and strain rate vary along the tether. In general, the cross sectional area may also vary
along the length of the tether. Another consequence of the assumption that the tether is an
elastic string is that the tension must be in the direction of the tether unit tangent vector,
so the tension vector at any point in the tether is

T =T+

= EA(e + c&)7 (3:32)

Using Egs. (3.28) and (3.29) in Eq. (3.32) yields an expression for the tension vector in terms
of the geometry of the tether.

One final point to note about the mathematical model of the tension in the tether is that
the tension cannot be a compressive force. This fact is yet another consequence of the
assumption that the tether is an elastic string. To account for this fact, we set the tension
magnitude equal to zero at any point it is calculated to be negative using Eq. (3.31),

T{ EA(e +c€), e+cE>0

0, e+ce <0 (3.33)

Modeling the tension in this manner does not account for buckling of the tether at points
where it becomes slack, and it also does not prevent the length of the tether from becoming
less than the unstretched length L when portions of the tether become slack. However,
typical TSS, and spinning TSS in particular, are expected to operate in a configuration in
which the tether remains completely tensioned, so the fact that the tension model does not
completely account for the effects of slackness is not a concern in this work.
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3.2.3 Magnetic Field Model and Electrodynamic Force

The magnetic field of the central body is modeled as a dipole centered at O with strength
par and unit dipole axis . The magnetic field vector at an arbitrary position R relative to
O is therefore

—

3(a-R)R
RQ

5 MM

TR

A

(3.34)

where R is the magnitude of R.

We assume that the magnetic field is fixed to the central body as it rotates, with u tilted
relative to the spin axis of the central body, the inertial ns axis, by a constant angle I". The
geometry of the unit dipole axis is illustrated in Fig. 3.4. The angle © defines the angle of
rotation of the i — n3 plane relative to the n; — n3 plane, and can be viewed as the local
sidereal time of the unit dipole axis. Assuming that the central body rotates at a constant
angular rate w., © can be expressed as a function of time as

O = O + wet (3.35)

where O is the value of © at t = 0. Using © and I', we can express u relative to the inertial
frame as
u = cos © sinyn; + sin © sin yn, + cos I'ng (3.36)

Ny

A
17
Figure 3.4: Geometry of the unit dipole axis t

The electrodynamic force acting on a stretched differential tether element is

— a_) —
Frp = zb—ids x B (3.37)
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where ¢ is the electrical current in the tether. Noting that

or or _

we can also express the electrodynamic force in terms of the unstretched arclength as
, oF .
Fgp =i1—ds x B 3.39
e = oy (339)

In this study we are only concerned with the effects of the electrodynamic force on the system
dynamics, and not with the actual physical mechanisms responsible for the generation of the
electrodynamic force. We therefore assume that the current in the tether can be controlled
to be any desired value. Recall that for an uncontrolled system the current in the tether
is dependent on the motion of the tether through the magnetic field of the central body.
Because of this dependence, the current naturally varies throughout the motion of the system.
We are not concerned with these naturally occurring variations because it is always possible
to include a separate power source in the system that can be used to control the current to
a desired value. For this reason, we do not include a relationship such as Eq. (1.1) in the
mathematical model of the electrodynamic force.

3.2.4 Equations of Motion of A

The complete set of equations of motion for the primary end body, A, consists of equations
governing the evolution of the osculating orbit of G4, and equations governing the rotation
of the body-fixed coordinate frame F4 relative to Fp. The latter set of equations govern the
attitude motion of A relative to the orbital frame.

The orbital equations for G4 are determined by applying Newton’s Second Law to A,
mAf’A = ]-?‘GA + T(O, t) (340)

where my is the mass of A, ﬁGA is the gravitational force of the central body acting on
A, and T(0,1) is the tether tension acting on A at the attachment point P4. Because the
central body is treated as a point mass, the gravitational force is given by Newton’s Law of
Universal Gravitation as . Al

FGA =73 FA (341)

A

Note that Eq. (3.41) also implies that A is a point mass, despite that fact that we have
modeled A as a finite body. However, because A is small relative to its distance from O,
any additional gravitational effects due to its finite dimensions are negligible relative to the
Newtonian component of the gravitational force, and Eq. (3.41) is a sufficient approximation.

Using Eq. (3.41) in Eq. (3.40), the orbital equation of motion for G4 is written as

T(0,¢)
ra = 3TA

Fy= — by (3.42)
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Defining the disturbance acceleration

T(0,¢
apa = (0.2) (3.43)

ma

we can rewrite Eq. (3.44) in the perturbation form
Fa+ Tﬁgf’A = dps (3.44)

A

If dpy = O, then Eq. (3.44) has the form of the equation of motion of a point mass on a
Keplerian orbit. Note that Eq. (3.44) approaches this case as m 4 approaches infinity. When
the disturbance acceleration is not zero, the disturbance acceleration causes perturbations
away from a Keplerian orbit.

The effects of the disturbance acceleration on the orbit of G4 are quantified in terms of
changes in the osculating orbit elements of GG 4. Express the disturbance acceleration relative
to Fo as

apa = apa101 + apa202 + apa303 (3.45)

where apai, apas, and apas are the disturbance acceleration components in the local hori-
zontal, orbit normal, and local vertical directions of the osculating orbit, respectively. Using
Eq. (3.45), the evolution of the osculating orbit elements under the action of the disturbance

acceleration is governed by the Gauss form of the orbit variational equations,*®°
2 2
0= {(e sinv)apas + (£> aDAl] (3.46)
h rA
5 (psinv)apas + [(p -I—hTA) Cos V + T a€e]apai (3.47)
i (racosf)apas (3.48)
h
. (’f‘A SiIlQ)CLDAQ

O — A~ 7)mbA2 3.49
hsin I ( )
e —(pcosv)apas + [(p+7a)sinv]apa - (rasinfcosl)apas (3.50)

he h 1
. % 4 (peosv)apas — |(p + ra) sinvjapar (3.51)

T4 he

where h = |/ip is the specific angular momentum of the osculating orbit. Equations (3.46-
3.51) completely define the translational motion of G4 relative to O, and thus the orbital
motion of the system. One important point we must note about Eqgs. (3.46-3.51), however,
is that they contain mathematical singularities for e = 0 and sin/ = 0, which correspond
to circular and equatorial orbits, respectively. These singularities are due to the well-known
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fact that w is undefined for circular orbits and €2 is undefined for equatorial orbits. A non-
singular set of osculating orbit elements, such as the equinoctial elements, could be used in
place of the classical orbit elements, but the classical elements are sufficient for our purposes
because an actual TSS is unlikely to ever be on exactly a circular or equatorial orbit.

Th rotational equations of motion of A are determined by applying Euler’s rotational equa-
tions to A, _
Iy - @a/n 4+ @an X Iy - Gan = Maa + Pp x T(0,1) (3.52)

where fA is the centroidal moment of inertia tensor of A, &, x is the angular velocity of Fy4
relative to Fy,
Wa/N = Wa/0 + Go/N (3.53)

and Mg, is the gravity-gradient torque acting on A about GG 4. Because the size of A is small
relative to its orbit radius, we use a linear approximation for the gravity-gradient torque,?3%°

— 3 —
MGA = —/;I_"A X IA . FA (354)
T'A

Using Eq. (3.54) in Eq. (3.52), the rotational equations of motion of A are written as

I,- ‘-_U)A/N + L«_jA/N X Ip - QA/N = i—ng X Ip - Ta + ﬁA X T(O,t) (355)
A
When expressed relative to F4 and combined with the kinematic relationship defined by
Eq. (3.17), the rotational equations of motion govern the evolution of the quaternion q,,
and thus the orientation of F, relative to Fp. Because F, is a body-fixed coordinate frame
for the rigid body F4, the orientation of F4 relative to Fp defines the attitude of A relative
to the orbital frame.

3.2.5 Equations of Motion of the Tether

The motion of the tether can be decomposed into two separate modes. The first mode is
represented by the motion of the coordinate axis ej relative to Fp. Recall that €3 points from
P, to Pg, and the undeformed tether lies entirely along €;. The motion of é5 relative to Fp
therefore defines the pendular mode of the tether motion relative to the orbital frame. The
second mode of the tether motion is the elastic vibrations of the tether. These vibrations
define the deformation of the tether away from its undeformed alignment with €3. Each of
these two separate modes of motion have a different set of governing equations of motion.
The equations of motion for the pendular mode govern the evolution of the tether attitude
angles a and (3, and the equations of motion for the elastic vibration mode govern the
evolution of the tether displacements U, V', and W.

The equations of motion for the pendular mode of the tether motion are derived by first
applying Newton’s Second Law to B,

mB?B = ]-?‘GB — T(L, t) (356)
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where 1y is the position of Gp relative to O, mp is the mass of B, f‘GB is the gravitational
force of the central body acting on B, and 'f‘(L, t) is the tether tension acting on B at the
attachment point Pg. As done with A, the gravitational force acting on B is modeled using
Newton’s Law of Universal Gravitation,

Fop = ——2l5, (3.57)
B

where rp is the magnitude of rg. Using Eq. (3.57) in Eq. (3.56), the translational equation
of motion of B is written as .
. F
= —> (3.58)
mp
where F‘B is the total external force vector acting on B,

Fg = ———715 — T(L,1) (3.59)
B
Noting that rg can be written as
r'p =Tp + Py +T(L,t) — Py (3.60)
Eq.(3.58) is written as )
r(L,t) = ay (3.61)

d, = —> —Txn—Pa+Pg (3.62)

Noting that there cannot be any transverse displacement of the tether at either of its ends,

we can express r(L,t) as
v(L,t) =[L+WI(L,t)|és (3.63)

and the inertial derivative on the left-hand-side of Eq. (3.61) is written as
F(L,t) = 1181 + #1085 + 1385 (3.64)
where

P = 2W(L,t)(&+0)cos B+ [L+W(L,t)][(&+6)cosf —2(c + 0)Bsin 5] (3.65)
Fra = 2W(L,t)B+[L+W(L,HG + (¢ + 6)2sin G cos f] (3.66)

irs = W(L,t) = [L+W(L,t)[(&+ 6)?cos? 5 + 7] (3.67)

Note that the quantities  and 6 are defined in Egs. (3.3) and (3.4). Expressing &y, relative
to Fg as
E_):L = CLLlél + aL2é2 + aL3é3 (368)
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and considering the components of Eq. (3.61) in the €; and &, directions, the equations of

motion for the tether attitude angles o and 3 are

ary — 2W (L, t) (& + 6) cos 3
L+ WI(L,t)

(&4 6)cos B —2(a+ 0)Fsinf = (3.69)
ar2 — 2W(L7 t)ﬁ
L+W(L,t)
Note that the pendular mode of the tether motion is affected by the elastic vibrations of
the tether, as evidenced by the longitudinal displacement terms W (L,t) and W (L,t) in
Egs. (3.69) and (3.70). There are also terms related to the transverse vibrations of the
tether in Eqs. (3.69) and (3.70), which appear in the equations through the tension term in

ar,.

B+ (& +0)2sinBcosf = (3.70)

The equations of motion governing the elastic vibrations of the tether are derived by con-
sidering the motion of a stretched differential element of the tether. Figure 3.5 shows a
free-body diagram of a stretched differential length element, ds. The forces acting on ds
are the gravitational force of the central body, ﬁGT, the electrodynamic force, ﬁED, and the
tension at each end of the element. Applying Newton’s Second Law to ds, we have

pdsty = Fap + T(s + ds, t) — T(s, 1) + Fap (3.71)

where 't is the position of ds relative to O, and p is the linear mass density of the tether such
that the mass of the differential tether element is pds. Note that p is time-varying because
the length of the tether changes with time while the mass of the tether remains constant.
As done with A and B, the gravitational force of the central body acting on ds is given by
Newton’s Law of Universal Gravitation,

_, dsp
FGT = —p 3'uI‘T (372)
T'r

where r7 is the magnitude of rr. The electrodynamic force acting on ds is given by Eq. (3.37).
Using these expressions for Fqr and Fgp in Eq. (3.71) and dividing both sides of the equation
by pds, the equation of motion of ds becomes

fr=—Tefr+ -2 +-— xB (3.73)

where we have used the fact that

OT(s,t)  T(s+ds,t) — T(s,1t)
ds ds

(3.74)

Equation (3.73) is in terms of the time-varying spatial coordinate s, so we would like to trans-
form it into a form that is in terms of the time-independent spatial coordinate 5. Changing
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—

T(s + ds,t)
Faor

Figure 3.5: Free-body diagram of a stretched differential tether length element ds

variables to § in Eq. (3.73), we obtain

. 19T 05 i0rds =
fp=—Li -2 L2 R (3.75)

A2 0505 posos

Noting that a differential tether element must have the same mass in its stretched and
unstretched state, it must be true that

pds = pds (3.76)

where p is the unstretched linear mass density of the tether. From Eq. (3.76), p and p are
related by

_ 0s
P=rae (3.77)

Unlike p, p does not change as the tether deforms, making it a preferable choice as a system
parameter. Using Eq. (3.77) in Eq. (3.75), the equation of motion of the tether is written as

10T i0F =

- ©mo,
=7+ -—4+-"-xB 3.78
T T%rT P Js ,605 . ( )

which is in terms of the time-independent spatial coordinate s and the constant parameter

p-

Noting that the position of the tether relative to O can be written as

Fr =TA+Py+T (3.79)
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the tether equation of motion can be further rewritten as

R - 1 8T 1 81_" — R =

= —— —— +-——XxB—rT) — 3.80
r rr + + i 95 r'a — Pa ( )
Equation (3.80) is a partial differential equation that governs the evolution of the shape of
the tether relative to P4. The boundary condition of Eq. (3.80) at Py is

£(0,t) =0 (3.81)

and the boundary condition of Eq. (3.80) at Pp is given by Eq. (3.61).

Using the expression for r(s,t) given by Eq. (3.23) and expressing Eq. (3.80) relative to
Fr yields partial differential equations for the tether vibration coordinates U, V', and W.
Because there can be no transverse displacement at the ends of the tether, the boundary
conditions for U and V are

U(0,t) =U(L,t) = 0 (3.82)
V(0,t) =V(L,t) = 0 (3.83)

From Eq. (3.81), the boundary condition of the longitudinal displacement at P, is
W(0,) = 0 (3.84)

The boundary condition of the longitudinal displacement at Pg is determined by taking the
component of Eq. (3.61) in the é; direction,

W(L,t) = aps + [L + W(L,t)][(& + 0)? cos? 5 + 5?] (3.85)

The complete set of equations of motion of the tether is given by Egs. (3.69), (3.70), and
(3.80), combined with the boundary conditions defined in Egs. (3.81) and (3.61). The pen-
dular motion of the tether is governed by Egs. (3.69) and (3.70), and the elastic vibrations
are governed by Eq. (3.80). Note that the pendular and vibration modes of the tether motion
are not independent, in that the elastic vibrations affect the pendular motion and visa versa.

3.2.6 Equations of Motion of B

Given the orbital motion of G4, the attitude motion of A, and the motion of the tether,
we can determine the motion of the tether attachment point Pg on B. The motion of Pg
defines the translational motion of B, so we do not need to derive equations of motion for
the translational motion of B. The only equations of motion we must determine are those
that govern the attitude motion of B relative to Fo.
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As done with A, the attitude equations of motion of B are derived using Euler’s rotational
equations, ‘
Ip - ‘BB/N + (BB/N x Ig - QB/N = MGB — ﬁB X T(L,t) (386)

where fB is the centroidal moment of inertia tensor of B, &g,y is the angular velocity of Fp
relative to Fy,
Wp/N = Wg/o + Wo/N (3.87)

and Mg is the gravity-gradient torque acting on B about Gg. We once again use a linear
approximation for the gravity-gradient torque,

- 3 -
MGB = —SMFB X IB . FB (388)

B

Using Eq. (3.88) in Eq. (3.86), the rotational equations of motion of B are

- . - 3u - . -
Ip - WB/N +wB/N x Ig - WB/N = 7"_5IurB xIg-rg — Pp X T(L,t) (389)
B
When expressed relative to Fg and combined with the kinematic relationship defined by
Eq. (3.17), the rotational equations of motion of B govern the evolution of the quaternion
dp, and thus the attitude motion of B relative to Fo.

3.2.7 Summary of the Mathematical Model

The mathematical model presented in this section defines the equations of motion governing
the various aspects of the system dynamics. These aspects are the orbital motion of the
system, the attitude motion of the end bodies, and the motion of the tether. Equations (3.46—
3.51) govern the evolution of the osculating orbit elements of G 4, and thus the orbital motion
of the system. The equations of motion for the attitude of A are given by Eq. (3.55).
The pendular motion of the tether is governed by Egs. (3.69) and (3.70), and the elastic
vibrations of the tether are governed by Eq. (3.80). The boundary conditions for the tether
elastic vibrations are defined by Egs. (3.81) and (3.61). Equation (3.89) governs the attitude
motion of B.

The complete set of equations of motion that comprise the mathematical model is a mix of
ordinary and partial differential equations. These equations are coupled and highly nonlinear,
making a direct analytical treatment of them completely intractable. This is not unexpected,
however, because the top-level model is intended to be the model that is the most complicated
possible, yet still practical from a computational standpoint. Any computational model
for the mathematical model must therefore consist entirely of numerical solutions of the
mathematical model. In the next section, we present two such computational models.
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3.3 Computational Models

The computational models for the mathematical model presented in the previous section
consist entirely of the tools required to produce numerical solutions to the system equations of
motion. To determine these numerical solutions, the equations of motion must be discretized
and a computer program must be written to numerically solve the discretized equations of
motion. Because the equations of motion governing the elastic vibrations of the tether are
partial differential equations, they must be discretized in both time and space. The equations
of motion governing the system orbital motion, end body attitude motion, and the pendular
motion of the tether are ordinary differential equations that must only be discretized in time.

In this section, we present two different computational models based on two different methods
of spatially discretizing the equations of motion for the tether elastic vibrations. The first
method is the assumed modes method (AMM), and the second method is the finite element
method (FEM). In both of these methods, the partial differential equations governing the
tether elastic vibrations are transformed into a finite set of ordinary differential equations.
This set of ordinary differential equations is then temporally discretized, and the full set of
discretized equations of motion can be used to determine numerical solutions for the system
motion.

3.3.1 Assumed Modes Method

The assumed modes method is one of the more common methods of spatially discretizing the
partial differential equations governing the elastic vibrations of the tether. Several studies
that have applied the AMM to non-electrodynamic TSS are those by Beletsky and Levin,’
Ruiz et al.,’® and Pradhan et al.’® The discretization procedure presented below is similar
to those used in these studies, with the exception that the electrodynamic force acting along
the tether is taken into account.

To spatially discretize the tether vibration equations of motion using the AMM, we begin
with Eq. (3.80) and rewrite the inertial derivative on the left-hand side of the equation as

where () denotes a time-derivative as seen by Fg. Using Eq. (3.90) in Eq. (3.80) and defining
the acceleration quantity

5 ©wo_, 4 1 G'f‘ @81‘“’ % ]:3; =, -
= I —_—— —_— —7T —_
T 2" 505 | pos AT Pa (3.91)
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the equation of motion for the tether elastic vibrations is written as

¥=arp (3.92)

o
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From Eq. (3.23), the left-hand side of Eq. (3.92) is
F=Ué + Ve, +Wey (3.93)
Expressing ar relative to Fg as
at = ar1€] + are€s + arsés (3.94)

and using Eq. (3.93) and (3.94) in Eq.(3.92), the vibration equations of motion are written
in terms of the tether displacements as

U = ap (3.95)
V = ap (3.96)
W = aps (3.97)

The boundary conditions of Eq. (3.95-3.97) are given by Egs. (3.82-3.85).

Next, we assume that each tether displacement can be expressed as a finite sum of products
of time-dependent generalized coordinates, C;;(t), and spatially-dependent assumed mode
functions, N;;(s),

U(s,t) = ZC’lj(t)Nlj(§) (3.98)
V(s t) = ZOQj(t)sz(g) (3.99)
W(s,t) = icgj(t)mj(s) (3.100)

where Np is the number of transverse assumed modes and Ny, is the number of longitudinal
assumed modes. Note that the numbers of transverse and longitudinal assumed modes can
be different. The only constraints on the assumed mode functions are that they form a
linearly independent, complete set, and that they satisfy the geometric boundary conditions
of the tether. Recall that the geometric boundary conditions of the tether are given by
Eqgs. (3.82-3.84). Substituting the assumed solution forms defined by Egs. (3.98-3.100) into
Egs. (3.95-3.97), we obtain

Nt
ZOIlej = ari (3.101)
j=1
Nr
ZCQjNQj = ar (3.102)
j=1

Np
ZngNgj = ars (3103)
j=1
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The final step in the AMM discretization is to apply the Galerkin method®® to Egs. (3.101-
3.103); however, we must consider the transverse and longitudinal vibrations separately
because of the form of their respective boundary conditions.

Fori=1,..., Ny, multiply Eq. (3.101) by Ny; and multiply Eq. (3.102) by Ny;, then integrate
over the length of the tether to obtain

Nt

Zmlijélj =ary; , 1=1,...,Np (3.104)

j=1

Np
Zm%jczj =ary , t=1,...,Nr (3.105)

=1

where we have defined
L
Miij = /NkiNkjdg (3.106)
OL
arg; = /OCLTI@]\%d5 (3.107)

Equations (3.104) and (3.105) each define a set of Ny ordinary differential equations for the
Nr generalized coordinates ;. Defining the matrices

M, =[] (3.108)
arp, = [arn] (3.109)
Ci = [Cul (3.110)

we can express each of Egs. (3.104) and (3.105) in matrix form as

MGy, = ary, (3.111)

Equation (3.111) defines the spatially discretized equations of motion for the transverse vi-
brations of the tether. In this work, the assumed mode functions for the transverse vibrations
are taken as

N;; = V2sin (%3) (3.112)

Note that these assumed mode functions satisfy the geometric boundary conditions for the
transverse vibrations defined in Eqs. (3.82) and (3.83). These functions are also orthonormal,
such that the mass matrices simplify to

M, =1 (3.113)

where 1 is the identity matrix.



ol

Considering now the equations for the longitudinal vibrations, multiplying Eq. (3.103) by
Ns; for i =1,..., N, — 1 and integrating over the length of the tether, we obtain

N
Zm3ijé3j =ar3; , t=1,...,N, —1 (3.114)

J=1

where mg;; and ars; are defined as in Eqgs. (3.106) and (3.107). We do not multiply by the
assumed mode function and integrate over the tether for ¢ = 1,..., Ny in this case because
we want to include an equation that accounts for the dynamic boundary condition of the
longitudinal vibrations, which is defined by Eq. (3.85). Using Eq. (3.100) in Eq. (3.85), we
have

NL NL
> CyiNgi(L) = ars+ |L+ Y C3;Naj(L) | [(6+ 0)* cos® B+ 3] (3.115)
j=1 j=1

Equations (3.114) and (3.115) define a set of N, ordinary differential equations for the N,
generalized coordinates C's;. Defining the matrices

msi1 ce msiny,
N3i(L) ... Nin,(L)

arsi
aps — : (3.117)
aza+ | L+ 3% Oy Ny (L) (6 +0)* cos? 5 4 57

and using Eq. (3.110), we can express Eqgs. (3.114) and (3.115) in matrix form as

M;Cs = ars (3.118)

Equation (3.118) defines the spatially discretized equations of motion for the longitudinal
vibrations of the tether. The shape functions for the longitudinal vibration are taken as

N (5) = (%)j (3.119)

Note that these assumed mode functions satisfy the geometric boundary condition given
by Eq. (3.84). Unlike the transverse assumed mode functions, however, the longitudinal
assumed mode functions are not orthogonal. This means that the mass matrix M3 is fully
populated, and taking its inverse in Eq. (3.118) will become increasingly computationally
intensive as NNy, increases.

The complete set of spatially discretized equations of motion for the tether elastic vibrations
is given by Egs. (3.111) and (3.118). Combining these equations with the equations of motion
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for the system orbital motion, end body attitude motion, and pendular tether motion forms
a set of ordinary differential equations for the entire motion of the system. This set of
ordinary differential equations is temporally discretized and solved numerically using the
built-in MATLAB function ode15s, which uses a variable-order method based on numerical
differentiation formulas to solve stiff systems of ordinary differential equations and differential
algebraic equations. Note that these numerical solutions are approximate solutions for the
system equations of motion, and they should approach the solution of the equations of motion
as both the temporal and spatial discretizations are refined.

3.3.2 Finite Element Method

The finite element method is a far less commonly used spatial discretization method for T'SS
dynamics than is the AMM. One application of the FEM to a TSS is that of Steiner et
al..,%! in which the dynamics of a system consisting of two rigid end bodies connected by a
flexible, variable length tether are numerically simulated. Another study that applied the
FEM to a similar problem is that by Kuhn et al.;?® however, the system considered in this
study is a simple string pendulum, and not a TSS. In what is presented below, we use a
similar procedure to that used in these works to apply the FEM to a TSS that includes
electrodynamic forcing.

In the FEM discretization, we begin by writing Eq. (3.80) in the weak form. Let V;(5) be
a shape function defined over the length of the tether. Multiplying Eq. (3.80) by V; and
integrating over the tether, we obtain

L L .
. w_ 10T 0 5 - - _
N;ds = —— —— +-——=—XxB-—-r)— N;d 3.120
/Or 5 /0 ( 2T 555 T 5as X BT XA T Ba | Nids (3.120)
Integrating the tension term in Eq. (3.120) by parts, we have
L1 AT L
10T 1|5 - - dN;
/ LOT s — LB o) Ny(L) — T(0, )Ny (0) / i s (3.121)
o pOs p o ds
From Egs. (3.40) and (3.58), the tension at the ends of the tether can be written as
T(0,t) = my (i‘i’A + %f’A) (3.122)
A
"B

Using Egs. (3.122) and (3.123) in Eq. (3.121), and using the resulting expression in Eq. (3.120),
we obtain

L L oo L
. ) L. . 1 =dN;
/ f’NidE:/ (_%f’T n f_a—‘: X B — ¥y — ﬁA) Nidg—/ T s
0 0 TT p S 0 p S (3124)

m o - m o -
_ma (rA + ﬁgrA> Ny(0) — B (rB + ﬂgrB) Ny(L)
P r P s
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Recalling that ¥t = A +p, + T and r'g = s + P, + (L, t) — Py, and defining the quantities

L
0 P 1%
L mp
Yoi = / N;ds + —N;(L) (3.126)
0 P
Vai = m—fBNi(L) (3.127)
p
g UL FTNdHLmBFBN(LH—mAFAN(O) (3.128)
e —3ViaS T — 1V — 5 1V; .
0o T P pri
2 1 [* -dN; o (for o
= ——_/ T %5+ L [ 2 <« BN.ds (3.129)
P Jo ds pJo Os
Eq. (3.124) is rewritten as
L o mp -, N = i . s
0

Equation (3.130) is the desired weak form of the equation of motion of the tether elastic
vibrations.

As done in the AMM discretization, in the FEM discretization we assume that the tether
displacements can be written as finite sums of products of time-dependent generalized coor-
dinates, Cj;(t), and spatially-dependent shape functions, N;(s),

UG,t) = anclj(t)Nj(s) (3.131)
V(51 = i@j(twj(g) (3.132)
W(5,1) = icgj(t)zvj(g) (3.133)

where n is the number of assumed degrees of freedom for the tether displacements. At this
point we must note that there are two fundamental differences between the AMM and FEM
discretizations. First, in the FEM the assumed solution form for all three displacements use
the same shape function, whereas in the AMM different functions are used for the transverse
and longitudinal displacements. The second difference between the discretization methods
is related to the generalized coordinates used in the assumed solution forms for the tether
displacements. In the AMM, the generalized coordinates are simply coefficients in series
representations of the tether displacements. In the FEM, however, physical significance is
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attached to the generalized coordinates by taking them as values of displacements, slopes, or
curvatures at various points along the tether. These points are called nodes, and the length of
tether between two nodes is called a finite element. Because the generalized coordinates rep-
resent actual physical quantities, the shape functions in the FEM are interpolation functions
for those physical quantities. This last point underscores the second fundamental difference
between the AMM and FEM discretizations: the assumed solution in the AMM takes the
form of a series representation, whereas the assumed solution in the FEM takes the form of
an interpolation function.

Using the assumed solution forms defined by Egs. (3.131-3.132) along with Eq. (3.90), the
equations of motion for the tether elastic vibrations become

Z mij [élj — 2(02]' sinﬁ — ng COS ,6)(06 + 6) - Clj(é& + 9)2 — (ng Sinﬁ — ng COS ﬁ)(a + 9)
7=1

—2(Cy; cos 8 + Cy;sin §) (& + 0) 3 sin ﬁ}

= —V1iTa1 — Y2iPA1 + V3iPB1 — Vai [(Oz +6)sin 3 + 2(c& + 0)3 cos 6} + 91+ fa

(3.134)
Zmij |:C’2j + ZCM(O[ + 9) sinﬁ + 20315 + Clj(Oé + Q) sinﬂ + Clj(d + Q)ﬁ COSﬁ
j=1
—(Cy;sin B — Cs; cos B)(a + 9)2 sin 3 — 02]-@"2 + C3jBi| (3.135)
= —Y1iTa2 — Y2iDA2 + V3iPB2 — V4i [ﬁ + (G + 60)* sin B cos 5] + gio + [fio
Z my; [égj — 2013(05 + 9)6 COSﬁ — 20236 - Clj<Oé + 9) COSﬂ — CQJ'B
j=1
—Cy; (& + 6)*sin B cos  — Caj(c + 0)% cos? § — ngﬁz] (3.136)
= —71iTA3 — V2iDA3 + V3iPB3 — V4i [(d +0)%cos® B+ 52] + gi3 + fi3
where we have defined the quantities
L
OL
Y = / sN:ds (3.138)
0

In Egs. (3.134-3.136), the quantities 745, fa;, PBj, 9ij, and f;; represent the components of
the vectors T'a, Pa, Pg, &;, and f; in the &; direction.

Equations (3.134-3.136) apply for i = 1,...,n, so they form a set of 3n ordinary differential
equations for the 3n nodal coordinates, C;;. Note, however, that several of the C;; are fixed
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because they must satisfy the boundary conditions of the tether. At this point, Eqs. (3.134—
3.136) are in a general form that applies to any choice of finite element and global shape
functions. We now specialize these equations so that they apply to the particular system we
are considering.

Let the tether be partitioned into N, uniform finite elements, each with a length of
le = — (3.139)

Each element contains two nodes, with each node located at one of the ends of the element.
We want the solution for each displacement to have continuity of displacement and slope so
that there are no physically unrealistic kinks in the shape of the tether. We therefore use
the displacement and displacement derivative (slope) at each node as the nodal degrees of
freedom. Each element therefore contains four degrees of freedom: a displacement and slope
at each end of the element.

Define the element natural coordinate & as

5 — 5
5 %0 (3.140)

. S — 8o

=2

where 5, and 5y are the values of 5 at the beginning and end of a particular element,
respectively. Note that the element natural coordinate is defined in the range £ € [0, 1].
Because each element contains four degrees of freedom, we can interpolate each displacement
(we consider U from here on, put what is presented applies to V and W as well) using a
third-order polynomial as

Ue(ﬁ, t) =Cy+ le + 0252 + 0353 (3141)

where ¢; are constant coefficients. Note that U¢ is the displacement for a particular element,
and not the displacement for the entire tether. The global displacement profile is determined
by piecing together all of the element displacement profiles, such as the one in Eq. (3.141).
The degrees of freedom of the element serve as boundary conditions for Eq. (3.141), so the
element displacement profile must satisfy

Ue(0,t) = c (3.142)
aue(0,t

U6<1,t) = Co+ €1+ Cca+cC3 (3144)
aue(1,t
# = ¢+ 202 + 303 (3145)

dg
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Solving Eqs. (3.142-3.145) for the constants ¢;, we obtain

o = U0,1) (3.146)
- @%%ﬁ (3.147)
6 = —3US(0,1) — 2%50’” L SUS(1, 1) — %5”) (3.148)
es = 2w (0,8) + WOD _opeqq gy 4 ALY (3.149)

d§ d§
Substituting Eqs. (3.146-3.149) into Eq. (3.141), the displacement over each element can be
written as

U, 1) = CTi(H)NT(§) + Cla(H) N3 (&) + Cra(t) Ny (§) + Cry(H) Ny (€) (3.150)

where we have defined the element nodal coordinates

Cs(t) = U0,t) (3.151)
dU<(0

Ch(t) = _T%il (3.152)

() = US(1,1) (3.153)
dU¢(1

CL) = _T%il (3.154)

and the element shape functions

Ni(€) = 1-3¢+26° (3.155)

N5(€) = -2 +¢ (3.156)

Ni(g) = 3¢ -2 (3.157)

Ni(¢) = —&+¢ (3.158)

A plot of the element shape functions is shown in Fig. 3.6. Note that these functions are the
cubic Hermite interpolation polynomials, which interpolate the nodal degrees of freedom for
each element.

The element shape functions are locally defined for each particular finite element; however,
we can use them to define the global shape functions. Because there are N, finite elements
and 2 degrees of freedom per element, there are n = 2(N, + 1) total degrees of freedom for
each displacement, and there are 2(N, + 1) global shape functions. From the definitions of
the element nodal coordinates, a global coordinate Cj; is a nodal displacement for odd j,
and a nodal slope for even j. Using the element shape functions, define the global shape
functions as

0, 0<5<(j—2)l
. NS, (j—=2)le<s5<(j—1)
Ngj_l(S) == Nf, ( . 1)€e S 3 S jge (3159)
0, j<s5<L
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1.2

_02 I I I I

(3.160)

for j =1,...,N.+ 1. An example of the global shape functions for N, = 3 and L = 1 is
shown in Figs. 3.7 and 3.8. When used in Egs. (3.131-3.133), the global shape functions
serve to interpolate the global nodal degrees of freedom, Cj;. Because of the form of the
global shape functions, we are actually forming the global displacement profiles using a type
of cubic spline interpolation.

Using the global shape functions in Eqs. (3.134-3.136) yields the desired set of 3n ordi-

nary differential equations for the nodal degrees of freedom. Using Eqs. (3.131-3.133) in

Egs. (3.82-3.85), we find that several of the nodal degrees of freedom must satisfy the rela-
tions

Ci(t) =Cinalt) = 0 ( )

Co(t) = Copa(t) = 0 ( )

C51 =0 (3.163)

C’g,nfl = ars -+ (L + Cg,nfl)[(d -+ 0)2 COS2 ﬁ —+ 62] ( )

for all time in order to ensure that the boundary conditions are satisfied. Enforcing Egs. (3.161—

3.164) in Egs. (3.134-3.136) removes 6 of the equations from the set, resulting in 3(n — 2)
ordinary differential equations for the remaining unconstrained nodal degrees of freedom.
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Combining Eqs. (3.134-3.136) with the equations of motion for the system orbital motion,
end body attitude motion, and pendular tether motion defines the complete set of spatially
discretized equations of motion for the system. As done with the computational model em-
ploying the AMM, the spatially discretized equations are temporally discretized and solved
numerically using the built-in MATLAB function ode15s. Note that these numerical solu-
tions are approximations of the solution of the system equations of motion that increase in
accuracy as the spatial and temporal discretizations are refined.

3.4 Verification of Computational Models

The computational models employing the AMM and FEM presented in the previous section
rely on discretized forms of the system equations of motion defined in the mathematical
model. The discretized equations of motion are coded in MATLAB and solved numerically
using the function ode15s. These numerical solutions can then be used to make predictions
about the various aspects of the system dynamics. The coding of the discretized equations
of motion is not a trivial task, however, and any number of errors can be made in the coding
process. Some of these errors can be significant, and their effect is to cause the numerical
solutions to display obviously incorrect behavior. Other coding mistakes can be much more
subtle, and their effects can be practically undetectable in many numerical solutions. Any
type of coding mistake, no matter how insignificant its effect on the numerical solution, must
be identified and eliminated from the code, and we would like a method of identifying when
coding mistakes are present. This process of ensuring that the code is mistake-free is known
as code verification, or verification of the computational model.

One possible method of identifying coding mistakes for the TSS is to use work-energy rela-
tions to monitor the total energy of the system predicted by the numerical solution. Expres-
sions governing the change of the total energy of the system can be derived and numerically
integrated along with the discretized equations of motion for the system dynamics. The
energy predicted by this numerical integration should match to a high degree of accuracy
the system energy calculated in post-processing of the predicted system dynamics. This
type of energy-check method of code verification was used by Pradhan*® on a planar TSS
consisting of two rigid end bodies connected by a flexible tether. The system configuration
considered was conservative, so the system dynamics predicted by the computational model
were expected to be energy-conserving. Several cases were considered, and the variations of
the total system energy away from a constant value were found to be small.

In this work, we use a more rigorous method to verify the computational models known as
the method of manufactured solutions (MMS). The MMS is more commonly used in the field
of computational fluid dynamics, but it can be applied to any system with a mathematical
model containing partial differential equations. One of the main advantages of the MMS
over other methods of code verification is that it is extremely sensitive to coding mistakes,
making it ideal for identifying even the most trivial coding errors. To the author’s knowledge,



60

this work is the first instance of the application of the MMS to the computational model
of a TSS. Two excellent resources on the MMS are the book by Roache® and the paper by
Roy.?? The presentation presented below is adapted from these two sources.

3.4.1 The Method of Manufactured Solutions

For most physical systems like the T'SS considered in this work, the mathematical model used
to model the behavior of the system does not admit an analytical solution. Because there
is no such analytical solution, there is nothing to compare the numerical solutions of the
computational model against to verify the computational model. In fact, there would be no
need for numerical solutions if an analytical solution existed for the mathematical model. The
MMS provides a means of verifying computational models in the above described situation
by considering a modified mathematical model for which an analytical solution is known.

To demonstrate the fundamental principles of the MSS we consider an illustrative example.
This example is relatively simple, but the basic ideas presented below are applicable to
much more complicated equations and sets of equations. Let v = u(z,t) be some quantity
of interest defined on the spatial and temporal domains x € [0,1] and ¢ € [0, 00), and let the
governing equation for u be

ou 5 OU

A

ot ox
Now, introduce an arbitrary term f into the right-hand side of Eq. (3.165) to obtain the
modified governing equation

(3.165)

Ju 5 Ou

—_— =y —

ot ox
At this point it may seem like the addition of f into the governing equation has merely
complicated the situation, but we must remember that f is an arbitrary term that we can
choose to be whatever we like. We can therefore choose f such that the exact analytical
solution to Eq. (3.166) is any function we desire. In this manner, we choose f to manufacture
a solution to the modified governing equation.

+f (3.166)

For the simple problem that we are considering, let the manufactured solution be

u*(z,t) = cos(t) sin(mz) (3.167)
where we use a superscript “*” to indicate a manufactured solution. Note that the manufac-
tured solution does not have to be physically meaningful or realistic in any way. It is often
advantageous to choose an unrealistic manufactured solution that contains lower frequency
content than the actual solution, because much coarser spatial and temporal discretizations
can be used to produce accurate numerical solutions to the modified governing equation
(which are needed later on in the method). The only constraints on the manufactured so-
lution are that it should be smooth with smooth derivatives. Because of these constraints,
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trigonometric and exponential functions are generally the best choices for manufactured
solutions. Substituting Eq. (3.167) into Eq. (3.166), we can solve for f as

f = —sin(t)sin(rz) — 7 cos®(t) sin(nz) cos(mx) (3.168)

which is the value of f required to manufacture the desired exact solution. Using Eq. (3.168)
in Eq. (3.166) yields an equation with the exact solution given by Eq. (3.167).

The boundary conditions of the governing equation can be dealt with in one of three ways
in the MMS. The first method of dealing with the boundary conditions is to enforce that
the boundary conditions behave according to the desired manufactured solution. For the
example we are considering, this means that we use Eq. (3.167) to define conditions at the
boundaries, so we could set

u(0,t) =u(l,t) =0 (3.169)

Note that we can also use the manufactured solution to set values of derivatives of u at the
boundaries. The only requirement is that the boundary conditions behave according to the
manufactured solution.

The second method of dealing with boundary conditions in the MMS is to include additional
terms in the original boundary conditions that force them to agree with the manufactured

solution. For the example we are considering, suppose that the boundary conditions of
Eq. (3.165) are

w(0,) = 1 (3.170)
a“éi’t) — sin(t) (3.171)

Adding the terms fy and f; into these boundary conditions, we create a modified set of
boundary condition to go along with the modified governing equation,

w(0,8) = 1+ f (3.172)
a“g;” = sin(t) + fi (3.173)

If the desired manufactured solution is given by Eq. (3.167), then fy and f; are chosen as

fo = -1 (3.174)
fi = mcos(t) — sin(t) (3.175)

These choices of fy and f; guarantee that the boundary conditions agree with the manufac-
tured solution for all time.

The third method of dealing with boundary conditions in the MMS is to simply select the
manufactured solution such that it agrees with the actual physical boundary conditions for
all time. In many cases, however, this method is impractical due to the complicated nature
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of the actual boundary conditions. It may be trivial to form a manufactured solution that
conforms to relatively simple geometric boundary conditions, but it can be quite difficult to
find a manufactured solution that fits to other types of boundary conditions, such as dynamic
conditions. For this reason, the first two methods discussed above are almost always used
in practice in place of this third method.

Another point that must be noted is that the manufactured solution defines the required
initial conditions of the modified governing equation. For the example we are considering,
from Eq. (3.167) the initial profile for u must be

u(z,0) = sin(nz) (3.176)

This basic principle also applies to systems containing higher-order time derivatives, in that
the manufactured solution must be used to determine any initial velocity or acceleration
profiles that are required to solve the modified equation and boundary conditions.

Once the modified governing equation is formed and a method of handling the boundary
conditions is selected, the modified equation and boundary conditions are discretized using
the method used for the original governing equation and boundary conditions. Numerical
solutions are computed using increasing levels of discretization refinement, and the numerical
solutions are compared to the manufactured solution. Because the manufactured solution is
the exact solution to the modified equation and boundary conditions, the numerical solutions
should converge to the manufactured solution as the discretization is refined. For some
discretization methods, such as the FEM, we also know the rate at which the numerical
solutions should converge to the manufactured solution.

If the numerical solutions of the modified equation and boundary conditions do not converge
to the manufactured solution as expected, then there must be mistakes in the code used to
solve the discretized equations. These mistakes can then be identified and eliminated from
the code, and new numerical solutions to the modified equation and boundary conditions
can be determined. Once the numerical solutions converge to the manufactured solution
as expected, the code used to solve the modified equation has been verified, and the terms
introduced to form the modified equation and boundary conditions can simply be removed
from the code. The end result of this process is a code that solves the discretized form of
the original governing equation and boundary conditions that is free of any coding mistakes
that result in solution errors. The numerical solutions will therefore converge to the actual
solution of the original governing equation and boundary conditions as the discretization is
refined.

In the remainder of this section the MMS is applied to the computational models for the T'SS
employing both the AMM and FEM spatial discretizations. The equations of motion for the
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tether are modified by introducing a term fr into Eq. (3.80), and a term f, into Eq. (3.58),

[T 10T ioF

r = —@I'T—i—ﬁg 56§XB_FA_ﬁA+fT (3177)
me"B == ]-?‘B"f—?L (3178)

The term fr serves to modify the equations governing the tether elastic vibrations, and
the term fi, serves to modify the boundary conditions of the tether elastic vibrations and
the equations governing the pendular motion of the tether. Equations (3.177) and (3.178)
apply to both the AMM and FEM discretizations; however, there are some differences in
the manner in which the MMS is applied to the computational models employing the two
methods. For this reason, we consider the FEM and AMM computational models separately,
and highlight the differences in the application of the MMS to the two computational models
as we procede.

3.4.2 Finite Element Method

The first step in applying the MMS to the FEM computational model is to spatially discretize
Egs. (3.177) and (3.178) using the procedure detailed in §3.3.2. Writing Eqs. (3.177) and
(3.178) in the weak form, we obtain

L
0

where we have defined the term
L
— — 1—»
h; = / frN;ds + —fL N;(L) (3.180)
0 P

Note that h; contains the terms that serve to modify the original governing equations and
boundary conditions. Using Eq. (3.179) and proceeding as outlined in §3.3.2, we obtain a
spatially discretized set of ordinary differential equations for the modified governing equa-
tions. These equations are once again temporally discretized and solved numerically using
the MATLAB function ode15s.

Let F represent the exact solution to the modified equations and f represent the numerical
solution determined for a certain level of discretization refinement. The solutions F' and f
correspond to one of the tether displacements U, V', or W. Note that F'is known because we
have “manufactured” an exact solution to the modified equations and boundary conditions.
For the FEM, the discretization error of the numerical solution is calculated using the discrete
[2-norm,

N

. — %Z(fj — F))2 (3.181)

J=1
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where the summation is over all points in space and time in the solution domain, and a
subscript j indicates a value evaluated at the j* point in the solution domain. As the dis-
cretization is refined, the discretization error should approach zero as the numerical solution
approaches the manufactured solution. The discretization error can be expressed as

e = CapAhY + Cpa A9 + HO.T (3.182)

where Ah is a measure of the spatial discretization, At is a measure of the temporal dis-
cretization, C'ap, and Ca; are constants, and H.O.T represents higher-order terms in Ah
and At. The terms P and () are the formal orders of accuracy of the spatial and tem-
poral discretizations, and define the rate at which the numerical solution approaches the
manufactured solution. For the FEM, Ah is proportional to 1/N,, and At is proportional
to the average time step used in the temporal discretization. If the numerical solution is
in the asymptotic solution range (meaning that it is sufficiently close to the manufactured
solution), then the higher-order terms are negligible, and the discretization error becomes

e = CanART + Op A9 (3.183)

Further, if we know that the error due to the temporal discretization is insignificant relative
to the spatial discretization error, then we can simply write the discretization error as

e = OapARY (3.184)

The temporal discretization error will be negligible for situations in which highly-accurate
time integrators are used with tight integration tolerances. This is the case for most of
the built-in MATLAB ODE solvers, including ode15s, which use variable-length time steps
and allow for very tight tolerances to minimize temporal discretization error. Given two
numerical solutions with discretization errors €; and €y, an observed order of accuracy can
be calculated using Eq. (3.184) as

pola/e) (3.185)

In(r)

where the refinement factor r = N,y /N,y provides a measure of the relative level of refinement
between the two numerical solutions. If the FEM discretization computer code accurately
solves the discretized equations of motion, then P determined from Eq. (3.185) will converge
to the formal order of accuracy of the method as the number of finite elements in increased.
The FEM discretization used in this work employs cubic shape functions, so the formal order
of accuracy of the method is 4.1 As the number of finite elements is increased, the observed
order of accuracy determined using Eq. (3.185) should therefore approach 4 if there are no
mistakes in the code.
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The manufactured solution used for the FEM in this work is

U*(5,t) = 50sin(2¢)sin (%) (3.186)
V*(5,t) = 25sin(t)sin (%) (3.187)
W*(5,1) = 10cos(t) (%)5 (3.188)
a*(s,t) = %cos(i?t) (3.189)
B*(5,1) = é—ocos (Q@t) (3.190)

where 74 and p are the instantaneous values of the orbit radius of G4 and the orbital pa-
rameter of the osculating orbit of G4, respectively. Note that the initial conditions of all
numerical solutions of the modified equations are determined using Eqs. (3.186-3.190). It is
vital that the initial conditions are determined using these equations, because if they are not
then the numerical solutions will not approach the manufactured solution as the discretiza-
tion is refined, even if there are no coding mistakes. The MMS terms fT and fL are calculated
numerically, and the integral terms containing g;, f1, fT, and f;, are evaluated numerically
using Simpson’s Rule with 101 evaluation points per finite element. This number of points
was determined to be sufficient to render the error due to the numerical integration using
Simpson’s rule negligible relative to the discretization error. The absolute and relative time
integration tolerances used by ode15s are both set to 1072 for all numerical solutions. These
tight tolerances ensure that round-off errors and iterative convergence errors that accumulate
during numerical integration do not have a significant impact on the discretization error, and
thus the observed order of accuracy. The system parameters used to determine all of the
numerical solutions are listed in Table 3.1, and all numerical solutions are determined over
the time interval ¢ € [0,27] s. The time span of 27 s may seem like a short simulation time
for a T'SS, but the periods of the manufactured tether displacements are all on the order of
27 s. Thus, while the integration time would be short for a simulation of the actual motion
of a TSS, it is sufficient to determine discretization errors and observed orders of accuracy
for the manufactured solution used in this study. Simulations are performed using 2 to 32
finite elements with a refinement factor of r = 2.

Figures 3.9 and 3.10 show the discretization errors and observed orders of accuracy for the
tether displacements calculated from the numerical solutions. Numerical values are listed in
Table 3.2. The discretization errors for each displacement decrease at roughly equal rates
as the number of finite elements is increased, indicating that they all have the same order
of accuracy. The observed orders of accuracy confirm this observation, as the orders of
accuracy converge to a value of 4 for all three displacements. As mentioned previously,
because the FEM discretization we have used employs cubic shape functions, it has a formal
order of accuracy of 4. Thus, the observed order of accuracy of the numerical solutions
matches the formal order of accuracy, and we can be confident that there are no coding
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Table 3.1: System parameters used to determine numerical solutions for the MMS applied
to the FEM

System Parameter

Unstretched Length L, m 20,000
Unstretched Linear Mass Density p, kg/m 0.0025
Longitudinal Stiffness FA, N 54,978
Structural Damping Constant ¢, s 0.06
A Mass m 4, kg 500
B Mass mpg, kg 50
A Inertias I4, kg-m? diag[300 400 200]
B Inertias Ip, kg-m? diag[30 40 20]
A Attachment Vector p,, m [00 1]
B Attachment Vector pg, m [00-0.1]
Current i, A 1

mistakes in the code used to solve the modified FEM discretized equations of motion. The
terms introduced to create the modified equations and boundary conditions can simply be
removed from this code, resulting in an error-free code that generates numerical solutions of
the original equations. The accuracy of these numerical solutions increases as the number of
finite elements used in the spatial discretization is increased.

3.4.3 Assumed Modes Method

The first step in applying the MMS to the AMM computational model is to spatially dis-
cretize Eqgs. (3.177) and (3.178) using the procedure detailed in §3.3.1. Doing so results in a
set of modified spatially discretized equations for the motion of the tether, which are tem-
porally discretized and solved numerically using the MATLAB function ode15s. Note that
the integral terms on the right-hand sides of the discretized equations of motion, defined by
Eq. (3.107) are evaluated numerically when determining the numerical solutions.

A different approach to determining the accuracy of the numerical solutions of the modified
equations is used for the AMM computational model than was used for the FEM compu-
tational model. With the FEM, we were able to perform an element refinement study and
determine observed orders of accuracy. These orders of accuracy converged to the formal
order of accuracy of the FEM discretization as the number of finite elements was increased,
thus verifying that the computer code implementing the FEM discretization is mistake-free.
With the AMM, we take advantage of the structure of the assumed solution form for the
tether displacements to create a scenario in which the solution to the discretized equations of
motion is exactly the manufactured solution. The numerical solution should then match the
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Table 3.2: Finite element discretization refinement results

Elements Discretization Error Error Ratio Observed Accuracy
U Displacement

2 0.66076950

4 0.07812766 8.45756182 3.08024182

8 0.00633334 12.33592802 3.62479435

16 0.00043225 14.65220335 3.87304572

32 0.00002758 15.67135128 3.97005768
V' Displacement

2 0.16512387

4 0.01953099 8.45445561 3.07971186

8 0.00158330 12.33562141 3.62475849

16 0.00010808 14.64985584 3.87281456

32 0.00000690 15.65400028 3.96845947
W Displacement

2 0.00612407

4 0.00046950 13.04385461 3.70529836

8 0.00003027 15.50906066 3.95503940

16 0.00000194 15.58361089 3.96195766

32 0.00000012 15.67354582 3.97025969
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manufactured solution with a high degree of accuracy, and the agreement should improve as
the integral terms in the right-hand sides of the discretized equations of motion are evaluated
more accurately.

Recall that in the AMM the tether displacements are assumed to be of the form:
Np -
U(s,t) = Y Ci;V2sin (%5) (3.191)
Np i
Vi(s,t) = ]Zl Co;V/2sin (fg) (3.192)

Np _
S\/J
WEH = S Oy (—) 3.193
w0 = 30} (3193)
Now, let the manufactured solution for the tether displacements be
U(5,t) = A sin(2t) [sin (%5) +sin (3%3)} (3.194)

V*(5,t) = Agsin(t) [sin (%5) + sin <2%s)} (3.195)

S S

W) = dveost) | (5) - (5) +(5) ] (3.196)

The manufactured solution for the pendular motion of the tether is the same as that used
in the application of the MMS to the FEM. Comparing Egs. (3.191-3.193) with Eqgs. (3.194-
3.196), we see that for Ny, N > 3 the solution to the discretized equations of motion should
match the manufactured solution with

Cunt) = Cralt) = AT“;%) (3.197)
Cia(t) =0 (3.198)
Con(t) = Ci(t) = ATQ@ (3.199)
S(t) =0 (3.200)
(t (3.201)

(1) (3.202)

There will be some error due to round-off and the fact that the integral terms in the dis-
cretized equations of motion are evaluated numerically, but these errors should decrease as
the integral terms are evaluated more accurately. The integral terms are evaluated numer-
ically using Simpson’s rule with with various numbers of evaluation points. The system
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parameters used in all of the numerical solutions are the same as those used in the applica-
tion of the MMS to the FEM, and are listed in Table 3.1. The time span for all numerical
solutions is 27 s.

The errors between the numerical solutions and the manufactured solution are plotted in
Figs. 3.11-3.13. For all three of the tether displacements the difference between the nu-
merically calculated coefficients and the exact solution values decrease as the number of
right-hand side evaluation points is increased before leveling off around steady values. This
convergence is most likely due to round-off errors and iterative convergence errors that arise
during the numerical integration of the discretized equations. The steady values reached
by all three displacements are on the order of 10~ which is equivalent to an error of ap-
proximately 107°% between the numerical and exact solutions. Because of these low errors
between the numerical and manufactured solutions, we conclude that the computer code that
implements the AMM discretization of the modified equations is mistake-free. The terms
introduced to modify the original governing equations can simply be removed to produce
a mistake-free computer code that produces numerical solutions of the original governing
equations. The accuracy of these numerical solutions increases as the number of assumed
modes is used in the spatial discretization.
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Figure 3.11: Error between numerical and manufactured solutions for the generalized coor-
dinates of the tether displacement U
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3.5 Comparison of Computational Models

In the previous section we used the MMS to verify that the numerical solutions produced by
the computational models employing the AMM and FEM spatial discretizations are accurate
solutions of the mathematical model. From this analysis, we know that the numerical so-
lutions produced by both computational models approach the solution of the mathematical
model as the spatial and temporal discretizations are refined. In this section, we present a
qualitative comparison of the two computational models, with the objective of determining
which model is better suited for application to a TSS.

The most significant difference between the AMM and FEM computational models relates to
the computational time required for the models to produce numerical solutions. Numerical
experiments have shown that both computational models work well for low numbers of as-
sumed modes or finite elements, in that both produce numerical solutions in a relatively short
computational time. However, as the number of assumed modes used in the AMM compu-
tational model to approximate the longitudinal vibrations increases, the computational time
increases rapidly, rendering the model practically useless. To see why this happens, consider
the mass matrix of the discretized equations for the longitudinal vibrations, which is defined
by Eq. (3.116). As N increases, the columns of the longitudinal mass matrix become in-
creasingly similar, causing the mass matrix to become nearly singular. This nearly-singular
behavior introduces significant numerical errors into the calculation of the accelerations of
the longitudinal degrees of freedom because the inverse of the mass matrix is used in their
calculations, and these errors in the accelerations can actually cause the longitudinal vibra-
tions to diverge when they should not. As the time integrator attempts to compensate for
this divergent behavior, the time steps become very small and the total integration time
becomes prohibitively large. The FEM does not have this same problem because the diag-
onal structure of the system mass matrices ensures that their columns are always linearly
independent, so there are no problems in taking their inverses due to ill-conditioning.

Nearly singular behavior of the system mass matrix for simple polynomial shape functions
in the AMM has been reported previously,”” and the simplest method of eliminating the
problem is to use a different set of assumed mode functions for the longitudinal vibrations.
The best possible set is an orthogonal set that makes the mass matrix diagonal and trivially
invertible. Another possibility is to use the mode shapes for the longitudinal vibrations
of a similar, but much simpler, problem as the longitudinal assumed mode functions. For
example, one could use the longitudinal mode shapes for a simple string pendulum as the
longitudinal modes shapes for the TSS. The mode shapes of the simpler problem would be
orthogonal or nearly orthogonal, and the resulting mass matrix would always have a well-
defined inverse. Other possible sets of longitudinal assumed mode functions exist, but their
analysis and implementation is left for future work.

Another advantage of the FEM over the AMM not specific to the shape functions used in
the AMM is that initial conditions are much easier to set in the FEM. Since the degrees
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of freedom in the FEM are simply displacements and slopes at points along the tether,
any arbitrary initial tether shape can be trivially converted to a set of initial coordinates
for numerical integration. This is not the case with the AMM, in which determining a set
of coordinates from an arbitrary tether shape requires a process similar to calculating the
coefficients of a Fourier series. While this is not necessarily a difficult task, it is more involved
than the process required in the FEM.

For the reasons discussed above, we conclude that the FEM computational model is better
suited for application to the TSS than is the AMM computational model. All applications
of the top-level computational model presented later in this dissertation use the FEM com-
putational model, so from this point forward the phrase “top-level computational model”
refers to the FEM computational model presented in this chapter. In the next section, we
present the outputs of the top-level computational model for two different applications of a
TSS, along with a discussion of the various aspects of the system dynamics.

3.6 Examples of Computational Model Output

In this section we present examples of the output of the top-level computational model for
two different T'SS. The first system is a spinning, non-electrodynamic T'SS, and the second
system is a local-vertically aligned electrodynamic TSS. The top-level computational model
is used to produce numerical solutions for both examples, and we present and discuss the
numerical solutions for both systems.

3.6.1 Example 1: Spinning Tethered Satellite System

The first example that we consider is for a spinning, non-electrodynamic TSS. The system
parameters used in this example are listed in Table 3.3, and the initial conditions used to
produce the numerical solution are listed in Table 3.4. Note that 4 finite elements are used
in the spatial discretization, and the time span of the numerical solution is approximately
5 orbits of the system. The initial conditions correspond to the system being on a nearly
circular orbit with an altitude of roughly 400 km. The entire system is nominally spinning
in the orbit plane at roughly 5 times per orbit, but there is a small initial out-of-plane tether
attitude angle of 1°. The tether initially has sinusoidal transverse displacements (both U and
V) with maximum displacement of 20 m, and the initial longitudinal displacement profile is
cubic. Note that this cubic displacement profile is determined using a quadratic expression
for the tension in the tether, as in Ref. [5].

The time history of the osculating orbit elements predicted by the top-level computational
model is shown in Fig. 3.14. Note that the osculating orbit elements (and all of the other
quantities presented for the examples considered in this section) are plotted against a nondi-
mensional time, which is defined as the dimensional time divided by the orbital period of the
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Table 3.3: System parameters used to determine numerical solution for Example 1

Primary End Body A

ma (kg) 500
I (kg-m?) diag(300 400 500)
Dy (m) (001
Secondary End Body B
Is (kg-m?) diag(30 40 50)
P, (m) 00-0.1)"
Tether
L (km) 20
p (kg/km) 2.5
EA (N) 55,000
c (s) 0.5
N, 4
Central Body
p (km?/s?) 3.986 x 10°

initial orbit of A, Py. For this example, the only orbital perturbation acting on the system is
the gravitational perturbation due to the distributed mass of the system. This perturbation
results in small, quasi-periodic oscillations of the orbit elements over the solution time span,
as shown by Fig. 3.14. The semimajor axis varies by approximately 70 km, which is about
1% of the initial value of 6,770 km. The frequency of the oscillations of a is roughly 5 cylces
per orbit, and the oscillations are about an average value of approximately 6,805 km. The
eccentricity varies in the range 0.001-0.01, with oscillations occurring about an approximate
average value of 0.005. Note that this average value is 5 times larger than the initial eccen-
tricity of 0.001, but is still a relatively low value for orbital eccentricity. The variation of €2
over the solution time span is quite small, being on the order of 0.001% of the initial value
of 300°. The variation in the inclination is equally small, also being on the order of 0.001%
of the initial inclination. The reason for such small variations in €2 and I is that the motion
takes place predominantly in the orbital plane, so the disturbance acceleration normal to
the orbit plane is small. From Egs. (3.48) and (3.49), small out-of-plane disturbance accel-
erations result in small changes in 2 and I, which is indeed the case for this example. The
variation in w is much larger than the variations in the other orbit elements considered thus
far, with the maximum variation from the initial value of 45° begin roughly 55°. The large
variations are seen because the eccentricity of the system orbit is small, and, according to
Eq. (3.50), the variations in w are proportional to 1/e. The variation in v is also proportional
to 1/e, resulting in the large variations seen in Fig. 3.14(f). Because the orbit of the system
is nearly circular, the true anomaly nominally behaves in a nearly-linear fasion; however, the



Table 3.4: Initial conditions used to determine numerical solution for Example 1

System Orbital Motion

a (km) 6,770
e 0.001
Q (deg) 300
I (deg) 50
w (deg) 45
v (deg) 0
A Attitude Motion
Qa (1000)"

(0 0.3247 0)T

B Attitude Motion

1000)T
(0 0.3247 0)T

Pendular Tether Motion

a (deg) 0
B (deg) 1
@ (deg/s) 0.3247
3 (deg/s) 0
Tether Elastic Vibrations

U(3,0) (m) 20sin (72)
U(5,0) (m) 0
V(5,0) (m) 20sin (2£)
V(5,0) (m) 0
W(5,0) (m) 26.6181 | £ — L (£)°

W (5,0) (m) 0.0011 [£ — L (£)°
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large variations in w result in large deviations from this nominal behavior.

The attitude motion of A predicted by the top-level computational model is shown in
Fig. 3.15. Because the entire system is nominally spinning in the orbit plane, A has a
spinning attitude motion as well. The spinning attitude motion of A is illustrated by the be-
havior of g4o and qa4, which vary between -1 and 1. Recalling the definition of a quaternion
in Eqgs. (3.9-3.11), this variation means that A is undergoing a continuous rotation about the
ay axis, which remains roughly normal to the orbit plane. There is also some small attitude
motion about the a; and a3 axes, as illustrated by the small amplitude oscillations of g4,
and qa3, but the attitude motion of A is dominated by the planar spin.

The attitude motion of B predicted by the top-level computational model is similar to that
for A, as shown by Fig. 3.16. The motion is dominated by a continuous spin about an axis
that is approximately normal to the orbit plane, but there is also small attitude oscillations
about the 131 and 133 axes as well.

The time-history of the pendular motion of the tether predicted by the top-level computa-
tional model is shown in Fig. 3.17. Because the tether is nominally spinning in the orbit
plane, the in-plane tether attitude angle o undergoes a continuous growth as the tether spins.
Note that we have shown the time-history of a modulo 360° so that the number of rota-
tions performed by the tether can be more easily distinguished. As shown by Fig. 3.17(a),
the tether performs just under 5 complete rotations per orbit, and the rotation rate is rel-
atively constant. This latter fact can be seen by examining Fig. 3.17(c), which shows that
& undergoes small-amplitude oscillations about an average value of approximately 0.315°/s.
The initial out-of-plane deviation of the tether is 1°, resulting in the out-of-plane pendular
attitude oscillations shown in Fig. 3.17(b). These oscillations are quasi-periodic with an
amplitude that is approximately the same as the initial out-of-plane deviation of 1°.

The elastic vibrations of the tether predicted by the top-level computational model are
shown in Figs. 3.18(a)-3.18(c). Note that these plots show the tether displacements at the
points § = L/4, L/2, and 3L/4. The plot for the longitudinal displacement also shows the
displacement at s = L. As Figs. 3.18(a)-3.18(c) show, the transverse vibrations are quasi-
periodic, with the tether midpoint undergoing oscillations at an amplitude of roughly 20 m.
Note that these displacements are on the order of 0.1% of the unstretched tether length. The
longitudinal displacements are also quasi-periodic, and the displacement at s = L oscillates
near 20 m over the entire solution time span. Also note that the amplitude of the oscillations
of the longitudinal displacement becomes larger as § increases.

Figures 3.18(d) and 3.18(e) show the stretched length of the tether and the tension at the
tether attachment points predicted by the top-level computational model. The stretched
length of the tether oscillates near 20.02 km for the entire solution time span, meaning
that the tether is stretched by approximately 0.1%. Note that the plot of the stretched
tether length is quite similar to the plot of W(L,t). This similarity is due to the fact that
the stretched tether length is predominantly affected by the longitudinal displacement, such
that the two quantities behave in a similar manner. The tension at P, oscillates about
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an approximate average value of 55 N, and the tension at Pp oscillates at an approximate
average value of 40 N. The amplitudes of the tension oscillations at P, and Pg are both
rough 5 N, although the amplitude of the oscillations at P, is slightly larger. Note that the
tension at P, is higher than the tension at Pg, illustrating that the tension decreases along
the tether from the primary end body toward the secondary end body.

To summarize the system dynamics predicted by the top-level computational model for this
example, the variation of the system orbit is quite small, with the exception of the argument
of periapsis. The tether undergoes a predominantly spinning motion in the orbit plane at
roughly 5 rotations per orbit, and the out-of-plane attitude motion remains on the order of
the initial deviation of 1°. Both end bodies also undergo a predominantly spinning attitude
motion in the orbit plane that follows the spinning motion of the tether. The transverse
vibrations of the tether are quasi-periodic and oscillate with an amplitude that is roughly
equal to the initial displacement amplitude. The longitudinal vibrations are also quasi-
periodic and result in a roughly 0.1% stretching of the tether.
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(d) Stretched tether length (e) Tension at the tether attachment points

Figure 3.18: Time history of the elastic vibrations of the tether predicted by the top-level
computational model for Example 1
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3.6.2 Example 2: Electrodynamic Tethered Satellite System

In this example we consider a local-vertically aligned electrodynamic T'SS. The system pa-
rameters used in this example are listed in Table 3.5. Note that 4 finite elements are used
for the spatial discretization, and the central body is Earth. We assume that the electrical
current in the tether is held at a constant value of -1 A. The initial conditions used to de-
termine the numerical solution are listed in Table 3.6. These initial conditions correspond
to the system being on a nearly-circular orbit with an altitude of roughly 400 km, and the
entire system is aligned along the local vertical direction. The tether has no initial transverse
displacement, but once again has an initial cubic longitudinal displacement profile that is
determined by assuming a quadratic tension profile.

Table 3.5: System parameters used to determine numerical solution for Example 2

Primary End Body A

ma (kg) 5,000
I5 (kg-m?) diag(3,000 4,000 5,000)
D () 00 1)"
Secondary End Body B
mp (kg) 500
Ig (kg-m?) diag(300 400 500)
Py, () (00-1)f
Tether
L (km) 20
p (kg/km) 2.5
EA (N) 55,000
c (s) 0.5
i (A) 1
N, 4
Central Body
p (km?/s?) 3.986 x 10°
pas (T-km?) 8 x 106
©p (deg) 0
I' (deg) 11.5

The time history of the osculating orbit elements predicted by the top-level computational
model is shown in Fig. 3.19. In this example, the disturbance acceleration affecting the
system orbit is a combination of a gravitational perturbation due to the distributed mass of
the system and a perturbation due to the electrodynamic force, with the electrodynamic force
being the dominant component. The electrodynamic force causes a secular increase in the
semimajor axis of approximately 2.3 km. The RAAN and inclination also experience secular



Table 3.6: Initial conditions used to determine numerical solution for Example 2

System Orbital Motion

a (km) 6,770
e 0.001
Q (deg) 300
I (deg) 50
w (deg) 45
v (deg) 0
A Attitude Motion
da (1000)"
wajo (deg/s) 000"
B Attitude Motion
s (1000)"
woso (deg/s) 000"
Pendular Tether Motion
a (deg) 0
B (deg) 0
& (deg/s) 0
3 (deg/s) 0
Tether Elastic Vibrations
U(s,0) (m) 0
U(5,0) (m) 0
V(5,0) (m) 0
V(5,0) (m) 0
W (5,0) (m) 147146 |§ — & (5)”]
W(5,0) (m) 0
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drifts due to the electrodynamic force, with both quantities decreasing over the solution
time span. Note, however, that the decrease in both quantities is quite small compared to
their initial values. The eccentricity and argument of periapsis do not appear to exhibit any
secular drift, and instead undergo quasi-periodic oscillations about an average value. For
the eccentricity, the average value is roughly 0.00175, and the amplitude of the oscillations
is about 0.00075. The average value of w is approximately the initial value of 45°, and the
amplitude of the oscillations is about 25°. Both e and w oscillate at approximately 5 cycles
per orbit. The true anomaly increases continuously as expected, with some variations due
to the variation in the argument of periapsis.

Figure 3.20 shows the time history of the attitude motion of A. The principal axes of A are
initially aligned with Fp, and, as the figure shows, undergoes small amplitude oscillations
about this initial orientation. This behavior is illustrated by the fact that g44 is approx-
imately 1 over the entire solution time span, while the other ¢4; remain near zero. The
attitude motion of B is similar to that of A, as shown by Fig. 3.21. The principal axes of
B are initially aligned with Fp, and the body undergoes small amplitude oscillations about
the initial orientation over the solution time span.

The time history of the pendular tether motion predicted by the top-level computational
model is shown in Fig. 3.22. The tether is initially aligned with the local vertical direction,
and the electrodynamic force drives small amplitude in- and out-of-plane tether attitude
motion. The maximum magnitude of both the in- and out-of-plane tether attitude angles is
0.45°. Note that the out-of-plane attitude angle behaves in a much more periodic manner
than does the in-plane angle, which appears to be oscillating in a somewhat chaotic manner.

The tether elastic vibrations predicted by the top-level computational model are shown in
Figs. 3.23(a)-3.23(c). As with the first example we considered, the elastic vibrations are
illustrated by displaying the tether displacements at several points along the tether. The
tether is initially aligned with the local vertical with some longitudinal stretching, and the
electrodynamic force drives transverse vibrations of the tether. As Fig. 3.23(a) shows, the
displacement u undergoes quasi-periodic oscillations. Note that U at all of the points shown
is positive because the component of the electrodynamic force in the €; direction is always
positive for this example, thus driving the positive oscillations seen in Fig. 3.23(a). The
same cannot be said for the displacement V', however, as seen by Fig. 3.23(b). The behavior
of V appears to be a combination of oscillations at a high frequency and oscillations at a low
frequency. The high frequency is simply the natural oscillation frequency of the tether, and
the low frequency is due to the fact that the component of the electrodynamic force in the
€, direction slowly changes as the system moves in its inclined orbit. This force component
slowly oscillates back and forth between positive and negative quantities at a frequency
slightly lower that the orbital frequency (due to the rotation of the magnetic field), resulting
in the alternately positive and negative character of V' seen in Fig. 3.23(b). The combination
of the behaviors of U and V results is a sort of slowly-varying “skip-rope” motion of the
tether as seen by the frame Fgz. The tether longitudinal vibrations behave much in the
same manner as seen in the first example we considered. As illustrated by Fig. 3.23(c),
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the longitudinal stretching of the tether remains relatively constant, with a longitudinal
displacement at § = L of approximately 13 m. Another point to note about Fig. 3.23(c)
is that the longitudinal displacement undergoes a period of high-frequency oscillation at
the beginning of the motion that damps out within a fraction of an orbit. This behavior
illustrates the primary affect of the structural damping in the tether, which is to damp out
high-frequency longitudinal vibrations.

The stretched tether length and tension at the tether attachment points predicted by the
top-level computational model are shown in Figs. 3.23(d)-3.23(e). The stretched length of
the tether undergoes a short period of high-frequency oscillations that damp out around a
value of roughly 20.013 km, meaning that the tether is stretched by 0.065%. As discussed
in the previous example, the behavior of the stretched tether length closely resembles the
behavior of the longitudinal vibrations. The tension at P, oscillates about an average value
slightly larger than 36 N, and the tension at Pp oscillates about an average value near 35 N.
As seen in the first example we considered, the tension in the tether decreases as § increases
from P, to Pg.

To summarize the system dynamics predicted by the top-level computational model for this
example, the electrodynamic force causes secular changes in the semimajor axis, RAAN, and
inclination of the system orbit. The change in the semimajor axis is relatively significant,
while the changes in the RAAN and inclination are practically negligible. The principal axes
of both end bodies are initially aligned with the orbital frame and undergo small amplitude
attitude oscillations about this initial configuration. The electrodynamic force drives small
amplitude in- and out-of-plane pendular tether motion, with the maximum magnitude of
both in- and out-of-plane motion being roughly 0.45°. The transverse vibrations induced
by the electrodynamic force are relatively complex, exhibiting a “skip-rope” type of motion.
The longitudinal vibrations are similar to those seen in the first example we considered, in
that they remain at relatively constant values over the solution time span.
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3.7 Summary of the Top-Level System Model

In this chapter we presented the top-level system model used in this work to study the
dynamics and control of spinning and electrodynamic TSS. The system is modeled as two
finite rigid bodies connected by a tether that is modeled as an elastic string. The magnetic
field of the central body is modeled as a tilted dipole that rotates with the central body.
A mathematical model for the system dynamics was developed that consists of equations
of motion governing the orbital motion of the system, the attitude motion of the end bod-
ies, and the motion of the tether. Two different computational models for the mathematical
model were developed, each employing a different method of spatially discretizing the partial
differential equations governing the elastic vibrations of the tether. The first computational
model uses the assumed modes method, and the second computational model uses the finite
element method. The computer codes used to solve the discretized equations of motion for
each computational model were verified using the method of manufactured solutions, which
provides a means of showing that the computer codes are error-free. A qualitative analysis
of the two computational models was conducted in which we concluded that the FEM com-
putational model is better suited to the study of TSS dynamics and control than the AMM
computational model presented in this work. This conclusion was based on the fact that the
AMM computational model produces bad results for large numbers of longitudinal assumed
modes. In the final section of this chapter we presented two examples of numerical solutions
produced by the FEM computational model, which we termed the top-level computational
model.

In the remainder of this dissertation, the top-level computational model is used to validate
various results and predictions obtained using lower-level system models and their associated
computational models. Because adequate experimental data on TSS dynamics and control
is not available, no predictions related to TSS dynamics and control can truly be validated.
However, the top-level system model is intended to be a sufficiently accurate representation
of the actual physical system, so numerical solutions produced by the top-level computational
model are used in the place of experimental data. If a result obtained from a lower-level
computational model compares favorably to numerical solutions determined from the top-
level computational model, then the result will be considered validated.



Chapter 4

Dynamics of Spinning Tethered
Satellite Systems

The proposal of TSS such as MXER has brought about a renewed interest in the study of
spinning T'SS. As mentioned in §1.3.1, a great deal of research has already been conducted
on spinning T'SS dynamics; however, there remain several areas of the subject that must be
addressed. In particular, a complete picture of the dynamics of the tether in spinning TSS
has yet to be completed, and virtually no effort has been made to validate results obtained
using simplified models. The objective of this chapter is to address these two unresolved
issues.

In this chapter we present a detailed analysis of the dynamics of the tether in spinning
TSS. The analysis is performed using a lower-level system model that is a simplification
of the top-level system model presented in Ch. 3. The mathematical model is derived,
and various elements of the computational model are presented. Specifically, we derive
analytical results pertaining to the out-of-plane pendular motion and transverse vibrations
of the tether. All of the results obtained from the lower-level system model are compared to
numerical simulations determined using the top-level computational model for the purposes
of validation. In the cases for which the lower-level results are not validated we present
an analysis of the modeling assumptions affecting the results, and recommend appropriate
changes to the lower-level system model.

4.1 Physical System and Conceptual Model

The physical system under consideration is a spinning TSS in orbit around an arbitrary
central body. The system consists of two end bodies connected by a single tether. In this
particular study we are not considering any effects due to electrodynamic forcing, so the
tether does not carry any electrical current.
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The conceptual model for the lower-level system model used in this study is formulated
by starting with the top-level conceptual model and making several additional simplifying
assumptions. We are primarily interested in the dynamics of the tether, so these assumptions
are intended to isolate the tether dynamics from the other aspects of the system dynamics.
First, we assume that the end body attitude motion has a negligible influence on the tether
and model the end bodies as point masses. Second, we assume that the primary end body
is much more massive than the secondary end body and the tether such that the primary
end body orbits the central body on an unperturbed circular orbit. Further, we assume that
any effects on the tether dynamics due to the eccentricity of the system orbit are negligible,
meaning that we can take the primary end body as constrained to an unperturbed circular
orbit. These assumptions have the effect of eliminating or prescribing all aspects of the
system dynamics except the motion of the tether.

Recall that the motion of the tether can be decomposed into a pendular mode and an elastic
vibration mode. Because the elastic vibrations are expected to remain small relative to the
length of the tether in a typical spinning TSS, we assume that the pendular motion of the
tether is unaffected by the elastic vibrations. We also assume that the longitudinal vibrations
are negligible, such that the transverse vibrations are the only relevant aspects of the elastic
vibrations. Because the transverse vibrations are assumed to be small, we further assume
that they do not have any effect on the tension in the tether, such that the tension is the
same as that of an equivalent rigid tether. Under these assumptions, the motion of the tether
can be viewed as transverse vibrations superimposed upon the motion of a rigid tether. Note
that similar conceptual models for spinning T'SS dynamics to the one used in this chapter
were considered in Refs. [5] and [8].

4.2 Mathematical Model

A diagram of the system under the modeling assumptions discussed above is shown in
Fig. 4.1. The primary end body is denoted A, and the secondary end body is denoted
B. The center of the central body is the point O, and the position of A relative to O is Ty.
Note that ra is prescribed for all time because A is constrained to an unperturbed circular
orbit. Let ds be a differential tether length element located at an arclength s along the
tether from A, and let the position of ds relative to A be T.

4.2.1 Coordinate Frames and Kinematics

Three coordinate frames are used in the development of the mathematical model. Let Fy
be the inertial frame with coordinate axes n;. The inertial frame is centered at O with ns
aligned with the spin axis of the central body, and the n; — ns plane defining the equatorial
plane of the central body.
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Figure 4.1: Diagram of lower-level spinning T'SS model

The orbital frame Fp, with coordinate axes 0;, is defined in a similar manner as in Sec. 3.2.1
for the top-level mathematical model. The axis 63 points from O to A , the axis 0, points in
the direction of the angular momentum of the A orbit, and 6; completes the right-handed
triad. Because A is constrained to an unperturbed circular orbit, the angular velocity of Fo
relative to Fy is

u_jo/N = QA(A)Q (41)

where 24 is the constant angular rate of the A orbit. Defining r4 as the constant orbit
radius of A, Q4 and r4 are related by

0% = u (4.2)

where p is the gravitational parameter of the central body. The angular acceleration of Fp
relative to Fy is zero because Wo/x is constant.

The tether-fixed frame Fg, with coordinate axes €;, is defined in the same manner as in
§3.2.1 for the top-level mathematical model. The orbital frame is transformed to Fg by
performing a 2-1 Euler rotation sequence through the angles o and —( such that ez points
from A to B. The DCM that maps Fo to Fg is given by Eq. (3.19), and the angular velocity
of Fg relative to Fo is given by Eq. (3.20).
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4.2.2 Tether Geometry

As discussed in §3.2.2 for the top-level mathematical model, the position of a differential
tether element relative to A can be expressed as

r(s,t) = se; + u(s,t) (4.3)

where § is the unstretched arclength and u is the displacement of the tether away from its
unstretched state. Because we assume that the longitudinal displacement is negligible,

where U and V' are transverse displacements, and Eq. (4.3) becomes

r(5,t) = U(5,t)é1 + V(5,t)ér + 5€3 (4.5)

Recall that the unit tangent vector of the tether is defined by Eq. (3.24). Using Eq. (4.5) in
Eq. (3.24), we have
ouds, Vs, O, 10
9505 ' " D55 2 05 (4.6)
Because the transverse displacements are assumed to remain small, we make the approxi-
mation 95

5

T(5,t) =

—~1 4.7
9 (4.7)
such that the unit tangent vector is written as
. ou. oV, .
T(5,t) = 55 & + 55 & +e;3 (4.8)

Using Eq. (4.8), the tension in the tether is expressed as

T(5,t) = T(5,t)7(5,1)
. (oU. oV, (4.9)
-1 )

gel + £92 + ég
where T is the scalar tension in the tether. In this mathematical model we do not relate T’
to the geometry of the tether, as done in the top-level mathematical model. Instead, we use
an approximate expression for the tension that is derived by assuming that the transverse
displacements do not affect the tension, which is in accordance with the assumptions used
in the model. This derivation is presented later in this section.
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4.2.3 Pendular Equations of Motion

Because we assume that the elastic vibrations of the tether do not affect the pendular motion
of the tether, we derive the equations governing the pendular motion by assuming that the
tether remains undeformed and aligned with €3. In this case, the entire system acts as a
rigid body, and the equations governing its motion are derived by treating it as a rigid body.

Applying Euler’s rotational equation to the undeformed system, we have
fc . L;_jE/N + ﬁE/N X fc . ‘DE/N = 1\71(3 (4.10)

where fc is the centroidal moment of inertia tensor of the system and 1\7[@ is the total
external moment acting about the system mass center. Note that &g,y is used as the body
angular velocity in Eq. (4.10) because the undeformed system remains aligned with és, so
Fg is a body-fixed frame for the undeformed system. Recall that one of the assumptions
made in formulating the conceptual model is that 4 is much more massive than B and the
tether, such that A remains on an unperturbed circular orbit. Another consequence of this
assumption is that the system mass center and A are essentially the same point, and we can
approximate Eq. (4.10) as

fA . ‘BE/N + ‘D‘E/N X fA . ‘BE/N = MA (411)

where fA is the moment of inertia tensor of the system about A and M A 1s the total external
moment acting on the system about A. Because all of the system mass in the undeformed
system lies entirely along the €3 axis, I is defined as

Iy = I4(1 — é3é3) (4.12)

where [, is the scalar moment of inertia of the system about O and 1 is the identity tensor.

Combining Egs. (3.20) and (4.1), the angular velocity and acceleration of Fg relative to Fy
are

QE/N = _Bél + (Oé + QA) COS Bég + (Oé + QA> sin ﬁég (413)

QE/N = —f3&, + [ccos B — (& + Qa)Bsin B)éy + [dsin 8+ (& + Q4) 6 cos flés (4.14)

The external moment acting on the system about A is due entirely to the gravity-gradient
acting over the length of the system. Because the length of the system is small relative to the
orbit radius of the system, we use a linear approximation for the gravity-gradient torque?

M, = 30%03 x I - 03 (4.15)

Combining Eqgs. (4.11-4.15) and expressing the result relative to Fg, we find that the
equations governing the pendular motion of the tether are

dcos i — 2(c 4 Qy)fsin 4 304 sinacosacosf = 0 (4.16)

B+ [(&+ Q)+ 3% cos’ a]sin feos f = 0 (4.17)
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Note that these equations are identical to the equations governing the motion of a dumbbell
satellite constrained to a circular orbit.!* This makes sense, of course, because the unde-
formed system is in fact a dumbbell satellite constrained to a circular orbit. This fact will
be utilized when analyzing Eqs. (4.16) and (4.17) later in this chapter.

4.2.4 Transverse Vibration Equations of Motion

The equations of motion for the transverse vibrations of the tether are derived in a similar
manner as the elastic vibration equations of motion for the top-level mathematical model.
Following the steps outlined in §3.2.5 and omitting the electrodynamic force, the equation
of motion of the tether is

A o, 13T
Mg 200 4.18
TS 5 s (4.18)

where T is the position of a differential tether element relative to O, rp is the magnitude of
rr, and p is the linear mass density of the undeformed tether. Noting that

Fr =1y +F (4.19)

Eq. (4.18) is rewritten as
o 2. 10T -
N i 4.20
r TTrT + 15 95 ra ( )

Using Eq. (4.9), the tension partial derivative term in Eq. (4.20) is

@— Ta2_U_|_a_Ta_U & + 82_V+0_Ta_v O _|_8_TA (421)
95 \" 02 9505 ) 952 0505 )" 95 '

Because A is constrained to a circular orbit,

fA = —’I“AQZ(A);; (4 22)
= 74Q%(sin @, + cos asin 38, — cos a cos (3e3)

As done in the derivation of the pendular equations of motion, because the length of the
tether is small relative to the orbit radius of the system the gravitational acceleration term
is approximated by linearizing about the position of A, such that

_T%FT = glél -+ ggég + ggég (423)
T

where

g1 = Q4[rasina + U(3sin? a — 1) + 3V sin a cos asin 3 — 35 sin a cos a cos 3] (4.24)
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go = Q4[ 74 cosasin B+ 3U sin acos acsin 3 + V(3 cos® asin? B — 1) (4.25)

— 35 cos® asin 3 cos f3]

g3 = =% [ racosacos + 3U sin acos acos 3+ 3V cos® asin 3 cos 3

+ 5(1 — 3 cos® acos® )] (4.26)

Using the expression for r defined in Eq. (4.5), the left-hand side of Eq. (4.20) is written as
T = 7161 + 8y + 363 (4.27)

where

iy =U — 2V (& + Q%) sin f — U(a + Q4)% — Vidasin 8 + 2(c 4 Q4) 5 cos []

. . - (4.28)
+ s[acos B — 2(&+ Q) B sin F]
Foy =V + 2U (& + Qu) sin 4+ Udvsin § — V[(& 4+ Q)2 sin® 3 + 7] (4.20)
+ 5[5 + (& + Q4)?sin § cos ] '
iy = —2U(ct 4+ Qu)cos f— 2V 3 — Udrcos § — V[ — (& + Q4)?sin G cos (] (4.30)

— 5[(& + Q4)% cos? B + 3]

Combining Eqs. (4.20-4.30) and taking the components in the &; and €, directions, the
equations of motion for the transverse vibrations of the tether are

U —2V(a+ Q%) sin B — Ul(a + Q%)%+ Q4(3sin®a — 1)]
— Vi]asin 3 + 2(& + Q4)3 cos f + 3Q% sin a cos asin ]
+ 5[d cos f — 2(& + Q4)Bsin 3 + 302 sin a cos a cos ] (4.31)

L (pPU, oToU
S p\U 058 05 03

V 42U (& + Q) sin 8 + U(ésin 3 — 302 sin a cos arsin f3)
— V[(ct 4 Q4)?sin® 6 + 57
+5[3 + (& + Q4)?sin B cos B 4 3Q3 cos® asin 3 cos ] (4.32)
L (r2y o)

o\ 052 ' 95 05
Using the pendular equations of motion defined in Eqgs. (4.16) and (4.17), the transverse
vibrations equations of motion reduce to

U —2V(a+ Q%) sin g — Ul(a + Q%)+ Q4 (3sin® a — 1)] — 2V (& 4 Q4) B sec 3

1 TaQ_U + a_Ta_U <4'33)
08> 05 0s

p
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V 42U (& + Qu) sin B + 2U[(& + Qa) B tan § — 302 sin a cos a] sin 3
— V(& + Qa)?sin® B+ 52 + Q4 (3 cos asin® B — 1]

1/ 0*V 9TV 434
( )

TV YUY
952 95 05

P

To complete the equations of motion for the transverse vibrations we need an expression for
the tension in the tether. Taking the component of Eq. (4.20) in the &5 direction, we have

—2U (& + Q4) cos 3 — 2V 3 — Ul(é cos § — 302 sin a cos a cos f3)

— VI[B — (& + Q4)?sin B cos § — 303 cos® arsin 3 cos 3]

— 5[(& + Qa)? cos? B+ 52+ Q4 (3 cos? avcos® B — 1)) (4.35)

_lor

- pOs
Now, recall that one of the assumptions made in the formulation of the conceptual model is
that the transverse vibrations do no affect the tension in the tether. Neglecting the transverse
vibration terms in Eq. (4.35), we find that the variation of the tension over the tether is

aor

5 = —p5[(& + Q)% cos® B + 52 + Q% (3 cos? acos® § — 1))] (4.36)

Integrating Eq. (4.36) with respect to §, we obtain

1 .
T(s,t) = —§ﬁ§2[(d + Qu)%cos? B+ %+ Q%4 (3cos? acos® B — 1)] + C (4.37)

where C' is an integration constant. To determine C', we consider the motion of B, which
defines the conditions of the tether at § = L. Applying Newton’s Second Law to B, the

equation of motion of B is

TEL g — T(L,t) (4.38)

mBi_;’B = —
"B
where r'g = 'y + (L, t) is the position of B relative to O and mp is the mass of B. Using the
linear approximation for the gravitational acceleration term evaluated at s = L and taking
the component of Eq. (4.38) in the &3 direction, we find that the tension at B is

T(L,t) = mpL[(& + Q4)? cos® B+ (2 + Q% (3 cos® arcos® § — 1)] (4.39)
Setting s = L in Eq. (4.37), we must also have
1 .
T(L,t) = —iﬁL2[(o} +Q4)?cos® B+ % + Q4 (3cos’ acos® B —1)] + C (4.40)
Equating Egs. (4.39) and (4.40), we find that the integration constant must be

C = cal(@+Qa)*cos? B+ 52 + Q4 (3cos? acos® B — 1)] (4.41)
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where we have defined the quantity
1
ca=mpL + §ﬁL2 (4.42)

Note that c4 is the first moment of inertia of the undeformed system about A. Using
Eq. (4.41) in Eq. (4.37), the tension in the tether is expressed as

T(5,t) = [(& + Q4)? cos? B+ (2 + Q4 (3 cos? acos® B — 1)] <cA - %,5§2> (4.43)

Using Eq. (4.43) in Eqgs. (4.33) and (4.34), we obtain

U—2V(a+ Q%) sin 3 — Ul(a+ Q%)% + Q4(3sin> a — 1)] — 2V (& + Q4) B sec 3
. 2\ 2 4.44

= [(& + Q)% cos® B+ 5% + Q% (3cos® acos® B — 1)] [(%‘—%) %—5%—2} (4.44)
V 42U (c 4 Qu) sin § + 2U (& + Q4) B tan 8 — 302 sin a cos a] sin 3
— V[(& + Q4)?sin? 3 + 32 + Q4 (3cos? asin? 3 — 1)] (4.45)
) 2\ 92 '

= [(& + Qa)?cos® B+ 3% + Q%4 (3 cos® acos® B — 1)] {(%A - %) 68_3‘2/ - 588—‘8/}
Equations (4.44) and (4.45) are a set of coupled, second-order partial differential equations
that govern the transverse vibrations of the tether. Because there can be no transverse
displacement at either end of the tether, the boundary conditions of Eqs. (4.44) and (4.45)
are

U0,¢) =U(L,t) = 0 (4.46)
V(0,t)=V(L,t) = 0 (4.47)

4.2.5 Nondimensional Equations of Motion

The complete set of equations of motion governing the motion of the tether is given by
Egs. (4.16), (4.17), and (4.44-4.47). These equations are cast in a nondimensional form by
first defining the nondimensional time

T = Qut (4.48)

and denoting derivatives with respect to 7 as () Note that 7 is the angle through which
A moves in its circular orbit over a time ¢. Using the nondimensional time, the pendular
equations of motion are written in nondimensional form as
°o?cosﬁ—2(o°z+1)ﬁosinﬁ+3sinacosozcosﬁ =0 (4.49)
B+[(&+1)%+3cos*a]sinBcosf = 0 (4.50)
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To cast the transverse vibration equations of motion in nondimensional form we also define
the nondimensional spatial coordinate

T=7 (4.51)

/

and denote derivatives with respect to = as ()’. Let the nondimensional transverse displace-

ments be defined as

U
= — 4.52
= (4.52)
\%
- 4.53
v = ¥ (4.53)
and define the nondimensional parameter
pL?
== 4.54
= (4.5
Note that, using Eq. (4.42), we can also express v as
pL
S — 4.55
7 mp + %ﬁL ( )

From Eq. (4.55), we can see that v € [0,2], with v = 0 corresponding to a massless tether
and 7 = 2 corresponding to mp = 0. Using Eqgs. (4.48) and (4.51-4.55), the transverse
vibration equations of motion and boundary conditions are written in nondimensional form
as

% — 28(& + 1)sin 8 — u[(& + 1)2 + 3sin® a — 1] — 20(& + 1) 3 sec 3

2— 7552) " /:| (456)
u —Iu
2y

= [(&+ 1)20082ﬁ+502+300520400525— 1] {(

U4 2u(a + 1) sin 5+ 2ul(& + 1)§tanﬁ — 3sinacos a]sin §

—v[(& 4 1)%sin® 3 + 32+ 3cos? arsin® B — 1] (4.57)
— [(&+1)%cos® B+ 3 + 3cos® acos? B — 1] {(2 _2:;:62) V" — :w'}
uw(0,7) =u(l,7) = 0 (4.58)
v(0,7) =v(1,7) = 0 (4.59)

Equations (4.49), (4.50), and (4.56-4.57) define the complete set of nondimensional equations
of motion for the system. In the next two sections, several aspects of the computational
model for the lower-level system model considered in this chapter are developed using these
equations.
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4.3 Computational Model: Pendular Motion of the
Tether

In this section we develop several aspects of the lower-level computational model for the
spinning T'SS. Specifically, in this section we focus on the pendular motion of the tether. Re-
call that the equations governing the pendular motion of the tether, Eqs. (4.49) and (4.50),
are the same as the attitude equations of motion for a dumbbell satellite constrained to a
circular orbit acted upon only by gravity-gradient torque. A dumbbell satellite is a special
type of rigid satellite model, so the analysis of the tether pendular motion is the same as
the analysis of a spinning rigid body on a circular orbit acted upon only by gravity-gradient
torque. Kane and Shippy?” studied such a system by assuming that the deviations away
from the nominal spinning trajectory were small and linearizing the equations of motion
about the nominal spin. For small out-of-plane motion, the in-plane motion is not affected
by the out-of-plane motion, and an exact solution for the in-plane motion was determined.
This solution was used in the linearized equations for the out-of-plane motion, resulting in
a system of homogeneous linear equations with periodic, time-varying coefficients. Floquet
theory was applied to determine the stability properties of the out-of-plane motion for vari-
ous combinations of satellite inertia parameters and average in-plane spin rate. Because of
limitations in computing power at the time, only a few specific cases were considered; how-
ever, it was demonstrated that the out-of-plane motion is unstable for certain combinations
of inertia parameters and average in-plane spin rate. Meirovitch and Wallace?® used purely
analytical methods to extend the analysis of Kane and Shippy by assuming that the satellite
is nearly symmetric about the spin axis. This assumption cannot be applied to a spinning
TSS, so the extended results of Meirvitch and Wallace do not apply to the present study of
spinning TSS pendular motion. Kane?® applied the same analysis methods used by Kane
and Shippy to a nominally Earth-pointing satellite and showed that the out-of-plane motion
is unstable for certain combinations of satellite inertia parameters and in-plane libration
amplitude. Once again, limitations in computing power limited the analysis to a few specific
cases. Breakwell and Pringle® later showed that the instability in the out-of-plane motion
discovered by Kane is due to a nonlinear internal resonance within the system equations of
motion.

The results outlined in the previous paragraph clearly indicate that the system model used
in this chapter will predict unstable out-of-plane pendular motion for certain system config-
urations. The description of these instabilities is not complete, however, because previous
research has only considered a handful of specific cases, or made assumptions about the
system geometry that do not apply to a spinning TSS. Modern computing power allows us
to make a complete description of the out-of-plane motion and any associated instabilities.
In addition, the analysis of a spinning T'SS requires the variation of only a single parameter
because the inertia ratios are set values for any TSS. Because of this fact, the analysis pre-
sented in this section can be viewed as an application of the results of Refs. [27] and [26] to
a specific type of spinning satellite (a TSS); however, the analysis presented in this section
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provides a much more detailed and complete analysis for that specific case.

Following the analysis methods used in Refs. [27] and [26], we use the fact that the nominal
pendular motion of the tether is a planar spin and linearize Eqs. (4.49) and (4.50) about

ﬂ:ﬂoz 0 to obtain

a+3sinacosa = 0 (4.60)
3+ [(&+1)*+3cos’alf = 0 (4.61)

Note that in this approximation the in-plane pendular motion—the “spin” of the tether—is
not affected by the small out-of-plane deviation. We can therefore solve Eq. (4.60) for o and
use the solution in Eq. (4.61) to analyze the small out-of-plane deviations, thus providing a
complete picture of the pendular motion of the tether in the viscinity of a nominal planar
spinning trajectory!.

4.3.1 Solution for In-Plane Motion

To determine the solution for the in-plane motion we first integrate Eq. (4.60) to obtain

& =+Vh—3sin’a (4.62)

W

where the “47 is for systems with a positive angular rate and the is for systems with
a negative angular rate. The constant h serves as a measure of the energy of the in-plane
pendular motion. In fact, A is actually a simplified version of the Hamiltonian of the pendular
equations of motion,?

H = (& + 3sin® a) cos® 3 + 3 + 4sin? B (4.63)

Linearizing Eq. (4.63) for small 3 we arrive at the same expression given by Eq. (4.16), so
h is a measure of the energy of the pendular motion assuming small out-of-plane motion.
Plotting Eq. (4.62) in the o — & plane for various values of h, we obtain the phase portrait
shown in Fig. 4.2. No motion is possible for h < 0, and the in-plane motion is in equilibrium
at « = x£nm for h = 0. For 0 < h < 3, the in-plane motion undergoes periodic oscillations
about one of the equilibrium states, and for A > 3 the in-plane motion is a continuous
rotation with the direction of the rotation determined by the sign of the initial rotation
rate. The value h = 3 corresponds to separatrices that separate the regions of libration
and rotation. The ovals in Fig. 4.2 correspond to regions of negative tension in the tether.
Assuming small out-of-plane motion in Eq. (4.43) and changing to nondimensional variables,
the tension in the tether is expressed as

1
T(x,7) = caQ4[(& +1)* +3cos* a — 1] (1 — §7x2) (4.64)

!The analysis presented in this section is also presented in Ref. [19)
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and we see that the tension in the tether becomes negative when
(G+1)*+3cosa—1<0 (4.65)

The ovals in Fig. 4.2 enclose the regions in the o — & plane that satisfy Eq. (4.65).

do/dt

Figure 4.2: Phase portrait for in-plane motion assuming small out-of-plane motion

Returning to Eq. (4.62), define the quantity x* = 3/h such that
da
V1—r2sin’a
Integrating Eq. (4.66), the in-plane angle must satisfy
+Vh1 + 9 = F(a, k) (4.67)

where 1) is a constant and F' = F(¢, k) is the incomplete elliptic integral of the first kind.?
Solving Eq. (4.67) for «, the solution for the in-plane libration angle is

sin~? (%sn (\/§T~|—w, %)) , h <3
a(t) = (4.68)
am(£Vh T+, k), h >3

= +Vhdr (4.66)

where am(u, k) is the Jacobi amplitude, and sn(u, k) is a Jacobi elliptic function. See Law-
den3? for a complete theoretical treatment of the Jacobi elliptic functions. We have not
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included the h = 3 case in Eq. (4.68) because it would most likely never be encountered in a
real system, and is mostly of academic interest. Also, note that the “4+” has been discarded
in the oscillatory solution because there is no need to distinguish between solutions with
positive and negative rotation rates when the motion is oscillatory. The constant 1 serves
as a type of phase-angle in both of the solutions in Eq. (4.68), so the qualitative behavior of
the motion is completely determined by the value of h. Without loss of generality, we can
assume that ¢ = 0, such that

sin™? (%sn (\/57', %)) , h<3
a(T) = (4.69)
am(+£Vh T, k), h >3

This assumption has the effect of shifting the nondimensional time such that «(0) = 0.
Taking the derivative of Eq. (4.69), the in-plane angular rate can be expressed as

\/ECH(\/gT,%), h <3

+vhdn(vVh7,K), h>3

Qo
I

(4.70)

where cn(u, k) and dn(u, k) are Jacobi elliptic functions.*? Note once again that for b > 3, the
“47 sign corresponds to solutions with a positive rotation rate, and the “-” sign corresponds
to solutions with a negative rotation rate.

For h < 3, the in-plane motion is oscillatory with a period of

_ 4K
VB

where K = K (k) is the complete elliptic integral of the first kind.?> Figure 4.3 shows the
number of in-plane oscillations per orbit as a function of h. As h approaches zero, the
number of oscillations approaches v/3, which is in agreement with the frequency of the in-
plane oscillations obtained by assuming that o remains small.® As h approaches 3, the
number of oscillations per orbit approaches zero as the motion approaches the separatrix
separating oscillation and rotation. For h > 3, the in-plane motion becomes a rotation
relative to the orbital frame, and is no longer periodic in the sense that trajectories in the
phase space are closed. However, the motion is periodic in the sense that the in-plane motion
completes one rotation relative to the orbital frame in a fixed amount of time. The rotational
period is

T, (4.71)

T, = 2E08) (4.72)

Vh
and the number of rotations per orbit is plotted in Fig. 4.4. As h decreases toward 3, the
number of rotations per orbit approaches zero as the motion approaches the separatrix. As
h increases away from 3, the number of rotations per orbit steadily increases and approaches

V'h as h approaches infinity.
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Figure 4.3: Number of oscillations per orbit for oscillatory systems
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Figure 4.4: Number of rotations per orbit for rotating system
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4.3.2 Floquet Analysis of Out-of-Plane Motion

Following the methods of Refs. [27] and [26], we use the solution for the in-plane motion
to study the behavior of the out-of-plane motion. Substituting Egs. (4.69) and (4.70) into
Eq. (4.61), the equation of motion for the out-of-plane motion has the form

B+p()8=0 (4.73)

where p(7) is a periodic function. Equation (4.73) is a Hill’s equation, so the stability
properties of the out-of-plane motion can be determined using Floquet theory.?® Since the
form of p(7) is different for oscillatory and rotational in-plane motion, we consider each case
separately.

Oscillatory In-Plane Motion

We are primarily concerned with spinning T'SS, however we include the analysis of oscillatory
systems here for the sake of providing a complete analysis of small out-of-plane pendular
motion. When the in-plane motion is oscillatory, the function p(7) is

R 1)] r3ae (var 1) (474)

which has the period
4K (L)
T, = z
V3
The magnitudes of the eigenvalues of the monodromy matrix for Eqgs. (4.73) and (4.74) are
shown in Fig. 4.5. For 0 < h < 2.16, both eigenvalues have a magnitude of 1, indicating
that the out-of-plane motion is purely oscillatory and remains bounded. At h = 2.16, the
magnitude of A\; becomes greater than 1, and the out-of-plane motion becomes unstable.
This instability continues up to h = 2.82, at which point the motion again becomes purely
oscillatory. At h = 2.95, the magnitude of A\; again becomes greater than 1, and the motion
is unstable. As h approaches 3, the magnitudes of both of the eigenvalues approach 1. The
stability properties of the out-of-plane motion for the case of oscillatory in-plane motion
are summarized in Table 4.1. All of the cases considered by Kane?® were for systems with
h < 0.1, and the out-of-plane motion was found to be stable in all of those cases. Therefore,
the results obtained above agree with previous results. In addition, the regions of unstable
out-of-plane motion discovered above were not reported in Refs. [26] or [9] because both
of those studies considered only relatively small amplitude in-plane oscillations, and the
unstable regions correspond to relatively large amplitude in-plane motion.

(4.75)

To better understand the behavior of the out-of-plane motion as h is varied we consider
the behavior of the eigenvalues of the monodromy matrix in the complex plane. Figure 4.6
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Table 4.1: Stability properties of the out-of-plane pendular motion for oscillatory in-plane
pendular motion

Region Stability Properties
0<h<216 bounded oscillatory motion
2.16 < h <2.82 unstable

2.82 < h <295 bounded oscillatory motion
295<h <3 unstable

illustrates the motion of the eigenvalues of the monodromy matrix. Because the out-of-plane
motion is governed by a second-order equation, the product of the two eigenvalues is 1, and
the eigenvalues must be either on the real axis or on the unit circle in the complex plane.”
For a value of h just greater than 0, the eigenvalues are at a point on the unit circle (points A),
and the motion is bounded and non-periodic. As h increases, the eigenvalues move to the left
along the unit circle until they both become -1 at h = 2.16. At this point, the out-of-plane
motion is either periodic with a period of T3 = 27, = 9.72696 or unstable, depending on
initial conditions. As h increases past 2.16, the eigenvalues split along the negative real axis
such that Ay Ay = 1 (points B) and the motion is unstable because the magnitude of one of the
eigenvalues is greater than one. The eigenvalues then reverse direction and approach -1, and
both become -1 at h = 2.82. At this point, the out-of-plane motion is again either periodic
with period T3 = 27, = 13.0285 or unstable. As h increases past 2.82, the eigenvalues
move to the right along the unit circle, and the motion is bounded and non-periodic. At
h = 2.95, the eigenvalues are both 1 and the out-of-plane motion is periodic with period
Tz =T, = 7.95287 or unstable. As h increases past 2.95, the eigenvalues split along the real
axis such that \; Ay = 1 (points C'), and the motion is unstable. Both eigenvalues approach 1
as h approaches 3. Summarizing the analysis of Fig. 4.6, the out-of-plane motion is bounded
and non-periodic for most values of A between 0 and 3. At the specific values h =2.16, 2.88,
2.95 the out-of-plane motion can be periodic with a period of T}, or 27},, and the out-of-plane
motion is unstable in the ranges 2.16 < h < 2.82 and 2.95 < h < 3.

Positive Rotational In-Plane Motion

When the in-plane motion is rotational with a positive rotation rate, the function p(7) is

p(T) = [1 +vhdn (\/ET, H)}Q + 3cn? <\/E7', /i) (4.76)

which has the period
2K
T, = () (4.77)
vh
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Figure 4.5: Magnitudes of the eigenvalues of the monodromy matrix of the out-of-plane
motion for oscillatory in-plane motion

Figure 4.6: Motion in the complex plane of the eigenvalues of the monodromy matrix of the
out-of-plane motion for oscillatory in-plane motion
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The magnitudes of the eigenvalues of the monodromy matrix for Eqs. (4.73) and (4.76) are
shown in Fig. 4.7. For 3 < h < 3.36, both eigenvalues have a magnitude of 1 and the
out-of-plane motion is bounded and oscillatory. At h = 3.36, the magnitude of A\; becomes
greater than 1 and the out-of-plane motion becomes unstable. This instability continues
through h = 3.55, at which point the magnitudes of both of the eigenvalues become 1 again.
For h > 3.55, the magnitudes of both of the eigenvalues are 1, and the out-of-plane motion
is bounded and oscillatory. The stability properties of the out-of-plane motion for the case
of positive rotational in-plane motion are summarized in Table 4.2. Two cases of positive
in-plane rotation were considered by Kane and Shippy,?” corresponding to A = 3.20 and
h = 26.5. The out-of-plane motion was found to be stable in these specific cases, so the
results obtained above agree with previous results.

Table 4.2: Stability properties of the out-of-plane pendular motion for positive rotational
in-plane pendular motion

Region Stability Properties

3 < h<3.36 bounded oscillatory motion
3.36 < h <3.55 unstable

h > 3.55 bounded oscillatory motion

The motion of the eigenvalues of the monodromy matrix in the complex plane is illustrated
in Fig. 4.8. For a value of h just greater than 3, the eigenvalues are on the unit circle (points
A), and the motion is bounded and non-periodic. As h increases, the eigenvalues move to the
right along the unit circle until they are both 1 at h = 3.36. At this point, the out-of-plane
motion is either periodic with a period of T = T, = 2.77756 or unstable, depending on
initial conditions. As h increases past 3.36, the eigenvalues split along the positive real axis
such that A\; A2 = 1 (points B), and the out-of-plane motion is unstable. The eigenvalues then
reverse direction and approach 1 along the positive real axis until they are both 1 at h = 3.55.
At this point the out-of-plane motion is either periodic with a period of T = T,, = 2.52008
or unstable. As h increases past 3.55, the eigenvalues move to the left along the unit circle,
and the motion is oscillatory and non-periodic. As h approaches infinity, the eigenvalues
asymptotically approach -1, meaning that there are no additional regions of unstable out-
of-plane motion, and the out-of-plane motion is bounded and non-periodic for h > 3.55.
However, because the eigenvalues approach -1 as h approaches infinity, the out-of-plane
motion approaches a periodic motion with period 27}, as h approaches infinity. Summarizing
the analysis of Fig. 4.8, the out-of-plane motion is bounded and non-periodic for most values
of h greater than 3 and a positive in-plane rotation rate. At the specific values h = 3.36
and h = 3.55 the out-of-plane motion can be periodic with period 7},, and the out-of-plane
motion is unstable in the range 3.36 < h < 3.55.
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out-of-plane motion for positive rotational in-plane motion
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Negative Rotational In-Plane Motion

When the in-plane motion is rotational with a negative rotation rate, the function p(7) is

p(r) = [1 —Vhdn (\/57', m)} ’ + 3cn? (\/ET, li) (4.78)

which has the same period as systems with a positive in-plane rotation rate, Eq. (4.77).
The magnitudes of the eigenvalues of the monodromy matrix for Eqs. (4.73) and (4.78) are
shown in Fig. 4.9. For 3 < h < 3.04, the magnitudes of both of the eigenvalues are 1, and the
out-of-plane motion is bounded and oscillatory. At h = 3.04, the magnitude of A\; becomes
greater than 1 and the out-of-plane motion becomes unstable. This instability persists until
h = 4.89, at which point the magnitudes of both of the eigenvalues are once again equal to 1.
For h > 4.89, the magnitudes of both of the eigenvalues are equal to 1, and the out-of-plane
motion is bounded and oscillatory. The stability properties of the out-of-plane motion for
the case of negative rotational in-plane motion are summarized in Table 4.3. The only case
of negative in-plane rotation considered by Kane and Shippy?’ corresponds to h = 3.20, and
the out-of-plane motion was found to be unstable. Therefore, the results obtained above
agree with previous results.

Table 4.3: Stability properties of the out-of-plane pendular motion for negative rotational
in-plane pendular motion

Region Stability Properties
3<h<3.04 bounded oscillatory motion
3.04 < h <4.89 unstable

h > 4.89 bounded oscillatory motion

The motion of the eigenvalues of the monodromy matrix in the complex plane is illustrated
in Fig. 4.10. For a value of h just greater than 3, the eigenvalues are on the unit circle (points
A), and the out-of-plane motion is bounded and non-periodic. As h increases, the eigenvalues
move to the left along the unit circle until they are both -1 at h = 3.04. At this point, the
out-of-plane motion is either periodic with a period of Ty = 27, = 8.16746 or unstable,
depending on initial conditions. As h increases past 3.04, the eigenvalues split along the
negative real axis such that A\;As = 1 (points B), and the out-of-plane motion is unstable.
The eigenvalues then approach -1 along the negative real axis until they are once again both
-1 at h = 4.89, and the out-of-plane motion is periodic with period T = 27, = 3.55337 or
unstable. As h increases past 4.89, the eigenvalues move to the right along the unit circle
until they reach the points C, at which point they reverse direction and approach -1 along
the unit circle. As h approaches infinity, the eigenvalues asymptotically approach -1 and
there are no additional regions of unstable out-of-plane motion. The out-of-plane motion
is bounded and non-periodic for all A > 4.89. As with systems with a positive in-plane
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rotation rate, the out-of-plane motion does approach a periodic trajectory with period 27,
as h approaches infinity because the eigenvalues asymptotically approach -1. Summarizing
the analysis of Fig. 4.10, the out-of-plane motion is bounded and non-periodic for most values
of h greater than 3 and a negative in-plane rotation rate. For the specific values h = 3.04
and h = 4.89 the out-of-plane motion can be periodic with period 27},, and the out-of-plane
motion is unstable in the range 3.04 < h < 4.89.

Figure 4.9: Magnitudes of the eigenvalues of the monodromy matrix of the out-of-plane
motion for negative rotational in-plane motion

Summary of Out-of-Plane Instabilities

The stability properties of small out-of-plane motion are summarized in Fig. 4.11. The
shaded regions correspond to in-plane trajectories that result in unstable out-of-plane mo-
tion, and the unshaded regions correspond to in-plane trajectories that result in bounded,
oscillatory out-of-plane motion. The oval regions are the regions of negative tension dis-
cussed previously. Note that a significant portion of the unstable oscillatory regions and
the entire unstable negative rotational region pass through regions of negative tension, so
these types of motions should be avoided regardless of the instability in the out-of-plane
pendular motion. The unstable regions for positive in-plane rotation corresponds to systems
that perform between 1.13 and 1.25 rotations per orbit.

We must also note that some previous research has indicated that an infinite alternation of
stable and unstable regions may exist in a small strip around the separatrices in Fig. 4.11.
Such a prediction is made in Ref. [56], in which first-order series expansions of the system
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Figure 4.10: Motion in the complex plane of the eigenvalues of the monodromy matrix of
the out-of-plane motion for negative rotational in-plane motion

Hamiltonian are used to derive the predictions of infinite stability alternation near the separa-
trices. If this type of stability behavior does indeed exist, it could be included in the analysis
presented in this section by using a very small increment of A~ when numerically calculating
the monodromy matrix required by Floquet theory. Small increments of h could capture
some, but not all of the stability alternations as the separatrix is approached. However, it
should be pointed out that the behavior of the system in a region so near the separatrices
is of little practical interest, most notably because the tether will always become slack, or
very near slack, at some point in these regions. For this reason, we do no consider a more
detailed study of the motion of the system near the separatrices.

4.3.3 Approximate Solution for Out-of-Plane Motion for Large h

From the results of the Floquet analysis presented previously in this section, the lower-level
computational model predicts that small out-of-plane pendular motion of the tether remains
bounded for systems with rotational in-plane motion and relatively large values of h. The
out-of-plane motion is oscillatory and non-periodic, but approaches a periodic trajectory
as h approaches infinity. In light of these results, we would like to determine solutions
for the out-of-plane motion for large values of h. Such solutions will provide a great deal
more information about the characteristics of the out-of-plane motion, and can also be
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da/dt

Figure 4.11: Regions of unstable out-of-plane motion

used as generating solutions for perturbation analysis of spinning TSS experiencing small
external perturbations. Since the equation of small out-of-plane motion is non-autonomous,
the determination of an exact general solution is a nontrivial task. However, solutions
that approximate the exact solution for small out-of-plane motion can be determined with
negligible error when h is relatively large.

Recall that the equation of small out-of-plane motion is given by Eq. (4.73), where the
periodic function p(7) is given by Eq. (4.76) for positive rotating systems and Eq. (4.78) for
negative rotating systems. Using several identities for the elliptic functions,?? we can rewrite
p(7) as

p(r) =h—2+2Vhdo(VhT, k) + 60 (VhT, k) (4.79)

W

sign is for negative rotating
10

where the “+” sign is for positive rotating systems and the
systems. The Fourier series for the elliptic functions cn(u, k) and dn(u, k) are

2T o gtz 2m+1)m

en(u, k) = K mgzo g Ccos ( e (4.80)
T 2T = ¢! (m+ D

dn(u, k’) = ﬁ + ? mgo W COS (TU (481)
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where the nome, ¢, is defined as

rK'

qg = e K (4.82)
K'(k) = KNT—#2) (4.83)

Plots of the Fourier coefficients for cn(u, k) and dn(u, k) are shown in Figs. 4.12(a) and
4.12(b). In these plots A,, is the coefficient on the cosine terms inside the summations
in Egs. (4.80) and (4.81). For h > 25, the first coefficient in the Fourier series for both
cn(u, k) and dn(u, k) is roughly two orders of magnitude greater than all of the other Fourier
coefficients. Therefore, for these values of h, we can approximate cn(u, k) and dn(u, k) by
retaining only the first terms in the series in Eqgs. (4.80) and (4.81),

en(u, k)~ s—z(ﬂ) cos <%u> (4.84)

1+gq
s 27 q s
dn(u k) ~ —— 421 <_ ) 4
n(u, k) 2K+K(1+q)cos 7l (4.85)
Using Eqs. (4.84) and (4.85), we can approximate p(7) as
p(T) =~ @+ 2bcos(2v) (4.86)
where we have defined
4m3q m™h
a = |1 + -2 4.
a [ +K2(1+q)2}h (4.87)
b 2nvhg | Vb (4.88)
K(l1+4¢q) | K(1+q)
mVh
pr— 4-
il (4.89)

Figures 4.13(a) and 4.13(b) show the error in the approximation of p(7) over one period for
various values of h. For positive rotating systems, the error in p(7) is less than 0.25% for
h > 25, and for negative rotating systems the percent error is less than 0.5% for h > 25.
As h increases, the error becomes progressively smaller, indicating that the approximation
given by Eq. (4.86) is quite accurate for h > 25. Using Eq. (4.86) and changing independent
variables to v, the equation of small out-of-plane motion can be written as

&5 + [a+2bcos(2v)]3 =0 (4.90)
dv? - '
where
AR? dnq IK  8K?
= 1 — 4.91
“ 2 [ + K2(1+ q)Q] ~/h mh (4.91)
8K q ) 7vh
b = +1 4.92
) e ] 492
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Equation (4.90) is recognized as Mathieu’s equation,®” for which we can use Floquet’s theo-
rem to determine an approximate analytical solution.

Floquet’s theorem states that a solution to Eq. (4.90) can be written as®

B) = e”o(v) (4.93)

where p is the characteristic exponent and ¢(v) is a periodic function of v with period 7.
Note that, in general, both p and ¢ are complex. Because ¢(v) is periodic, we can expand
it in a Fourier series such that

[e.9]

B(v) = e Z cpe?™ (4.94)

where ¢, are the coefficients of the series. Rewriting p(v) as
p(v) = a+b(e* +e ") (4.95)

and using Eq. (4.94), we can rewrite Eq. (4.90) as

Z (p + 2in)2c, e P 4 (a4 b(e* + 2] Z cpelPEY — (4.96)

n=—oo n=—oo

Collecting powers of €™ we obtain the following infinite set of linear algebraic equations

for the Fourier coefficients,
ben_1 + [a+ (p+ 2in)%ec, + bepi =0, n=—o0o,...,00 (4.97)
The system of equations given by Eq. (4.97) can be written in matrix form as
Ac=0 (4.98)

where A is an infinite tri-diagonal matrix, ¢ is a column matrix containing all of the Fourier
coefficients, and 0 is the infinite zero column matrix. For Eq. (4.98) to have a non-trivial
solution, the determinant of A, A, must be zero. It can be shown that?"3°

1 1
A(ip) = A(0) — sin? <§m’p) csc? <§7r\/5) (4.99)
so the characteristic exponent must satisfy the transcendental equation
o1 . .o (1
sin” | 5mip | = A(0) sin §7r\/a (4.100)
If b < 1, then we can approximate A(0) as3”

A0) ~ 1 — ”lfj’at(g%f\l/)a) (4.101)
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Figure 4.12: Magnitude of Fourier coefficients for the elliptic functions cn(u, k) and dn(u, k)
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and Eq. (4.100) can be approximated as

, mb? sin(m\/a)

cos(imp) = cos(mv/a) + Ia(a—1) (4.102)
Figure 4.14 shows b? as a function of h for both positive and negative rotating systems. Note
that b% is roughly 100 times smaller than 1 for A > 25, so the approximations given above
are valid for relatively large values of h. Given values of a and b, the characteristic exponent
can be determined from Eq. (4.102), which can then be used in Eq. (4.97) to determine
the Fourier coefficients for ¢(v). This procedure is valid for general out-of-plane motion;
however, we are considering the motion for large values of h for which we know that the
motion remains bounded and oscillatory, so we can simplify the solution further.

10
— Positive Rotation
-~ ~Negative Rotation
1072}
N
o0
10°}
-4
10 50 20 60 80 100
h

Figure 4.14: b? as a function of h for positive and negative rotating systems

According to Floquet theory, the characteristic exponents of Eq. (4.90) can be written as®’

In(|A ' A
o — n(|\,|) + 4 arg( n)7 n—1.2 (4.103)

™

where )\, are the characteristic multipliers of the system, which are also the eigenvalues of
the monodromy matrix. Note that there are two characteristic exponents because there are
two distinct, linearly independent solutions to Eq. (4.90) that can be written in the form of
Eq. (4.93). Since we are considering bounded motion, the magnitude of the characteristic
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multipliers is 1, |A,| = 1, and the characteristic exponents must be purely imaginary. Also,
since there are only two characteristic exponents, they must form a complex conjugate pair,
and they can be written as

p=*tip (4.104)

where p > 0 is a real number. Using Eq. (4.104) in Eq. (4.102), we can solve for y as

o mb? sin(m\/a)
p=_cos (cos(w\/a) + Iva(a—1) ) (4.105)
The percent error in the approximate solution for i as a function of A is shown in Fig. 4.15.
The error was determined by calculating ;4 numerically and comparing the approximate value
determined from Eq. (4.105) with the numerical value. For both positive and negative rotat-
ing systems, the percent error is less than 10~ for 4 > 25, indicating that the approximation
given by Eq. (4.105) works quite well for relatively large values of h.

— Positive Rotation
10 °F -~ ~Negative Rotation | |

Percent Error

10_ I I I I

20 40 60 80 100

Figure 4.15: Percent Error in p as a function of h for positive and negative rotating systems

Now that we have approximate expressions for the characteristic exponents, we return our
attention to Eq. (4.97) and the solution for the Fourier coefficients of ¢(r) and the general
solution for 8. Dividing Eq. (4.97) by a + (p + 2in)?, we obtain

EE e+ icfﬂ =0, n=—oo,..., 00 (4.106)

where we have defined
§i = (4.107)
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The “+” sign in Egs. (4.106) and (4.107) corresponds to p = iu, and the “-” sign corresponds

to p = —iu. Noting that £ = £Z,,, from Eq. (4.106) it must also be true that ¢ = ¢Z,. The
solutions for (3 are therefore
BE(v) = e Z cre=2mny (4.108)
Letting ¢, = ¢ and making use of Euler’s identity, Eq. (4.108) is rewritten as
GE(v) = Z cnlcos((2n + p)v) £ isin((2n + p)v)] (4.109)
and the general solution for 3 can be written
Bv) = C13"(v) + CoB~ (v)
= B Z cncos((2n 4 p)v) + iBsy Z Cpsin((2n + p)v) (4.110)
= By cm(a, b,v) +iBysm(a, b, v)
where B; are constants and we have defined the functions
cm(a, b, v) = Z cncos((2n + p)v) (4.111)
sm(a,b,v) = Z cpsin((2n + p)v) (4.112)

Note that ¢, and p are functions of a and b. Because Eq. (4.90) is linear and homogeneous,
we can use Egs. (4.110-4.112) to express any real solution for (5 as

B(v) = Byem(a, b,v) + Bysm(a, b, v) (4.113)

Numerical experiments show that the dominant values of ¢, are for —2 < n <1, so we set
all other values of ¢, equal to zero and determine approximate values of the most domi-
nant coefficients. Also, because Eq. (4.90) is homogeneous, the amplitude of the solution is
arbitrary, and we can set cg = 1. This leaves us with the linear system

[ 1 0O 0 0 0 0] C_3 0

£y 1 €5 0 0 0 c 0

0 &1 1 &4 00 | 10

0 0 0 1 0 0 Co 11 (4.114)
0 0 0 51 1 51 C1 0

L0 0 0 0 0 1]\ e 0
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from which we obtain

&8
C_o9 = 11— 5_26_1 (4115)
R = N
R (4.116)
i = —51 (4117)

Using Eqs. (4.115-4.117), we can approximate the functions cm(a, b, v) and sm(a,b,v) as

enfab.) = ( 2 Y cosl = ) = (= ) cosle =2

1 =& 28 1 =898 (4.118)
+ cos(uv) — & cos((u + 2)v)
_ (St sin((u —4)v) — b sin((pn — 2)v
smfo,bo) = (P2 Y= = (= E =20

+ sin(ur) — & sin((pn + 2)v)
We normalize cm(a, b, v) and sm(a, b, v) such that cm(a,b,0) = 1 and sm’(a,b,0) = 1, where
the prime denotes differentiation with respect to v. Defining the normalization factors

fo = 1-861—&(1—&28) (4.120)
fo = pll =& =& a(1 = &§28)] +2[6 1 (1 +E2(—2+ &) — & (4.121)

the normalized forms of cm(a, b, v) and sm(a, b, v) are

§-281 cos((p — 4)v) — £y cos((p = 2)v)

cm(a, b,v) =

fe
n (1 — & 26_1)[cos(pr) — & cos((p + 2)v)] (4.122)
fe
sm(a, b, V) :5_26_1 sin((u —4)v) — & ysin((p —2)v)
’ (4.123)
(= ) sin(p) — & sin(+2)v)]
fs
Using the normalized forms of Eqgs. (4.122) and (4.123), the constants B; are determined as
B = 5(0) (4.124)
267(0)
B I (4.125)

The approximate solution for 3 can be interpreted as a linear combination of four simple
harmonic oscillators,

B(r)=A Z C,, cos(w, T + 0) (4.126)

n=1
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where A and ¢ are constants that depend on the initial conditions, and

7Vh[i— (6 — 2n)]

Wy = o7 (4.127)
C, = &6 (4.128)
Cy = —€4 (4.129)
Cy = 1-&6 (4.130)
Ci = —&(1—&28) (4.131)

The magnitudes of the approximate solution coefficients and the approximate solution fre-
quencies are plotted as functions of h in Figs. 4.16(a) and 4.16(b) for positive rotating
systems, and in Figs. 4.17(a) and 4.17(b) for negative rotating systems.

For systems with a positive in-plane rotation, the dominant term in the approximate solution
for 3 is the n = 2 term, followed by the n = 3, n = 1, and n = 4 terms. The dominance
of the n = 2 term becomes more pronounced as h increases, and all of the frequencies
increase as h increases. Note that there are two distinct “high” frequencies (n = 1,4) and
two distinct “low” frequencies, and that the two most dominant terms in the approximate
solution correspond to the low frequencies. The higher frequency terms are relatively minor
contributions to the out-of-plane motion for all higher values of h.

For systems with a negative in-plane rotation, the dominant term in the approximate solution
for 3 is the n = 3 term, followed by the n = 2, n =4, and n = 1 terms. The dominance of
the n = 3 term increases as h increases. As with systems with a positive in-plane rotation,
all of the approximate solution frequencies increase as h increases, and they can be divided
into two high frequencies (n = 1,4) and two low frequencies (n = 2,3). The low frequency
terms provide the most significant contribution to the out-of-plane motion, and the high
frequency terms provide relatively minor contributions.

4.3.4 Bounds on Out-of-Plane Motion

The Floquet analysis of the linearized equations of motion for the pendular motion of the
tether predicts that the out-of-plane motion grows unbounded for certain values of A. This
is not necessarily the case for the nonlinear system, however, as the fact that the quantity
H defined in Eq. (4.63) is conserved can place bounds on the possible out-of-plane motion.

Define the quantities

T = &%cos? B+ (4.132)
V = 3sin®acos® 3+ 4sin’® 3 (4.133)

such that H can be expressed as
H=T+V (4.134)
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Figure 4.16: Out-of-plane approximate solution properties for systems with positive in-plane
rotation
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Figure 4.17: Out-of-plane approximate solution properties for systems with negative in-plane

rotation
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Note that 7 and V are the kinetic and potential energies of the pendular motion of the
tether relative to the orbital frame. For a given value of H, the maximum possible values
of aw and (8 occur when 7 = 0, such that V = H. This fact is analagous to the fact that
the maximum amplitude of a simple pendulum occurs when the pendulum is stationary,
and all of its energy is potential energy. The contours of ¥V = H in the o — 3 plane define
the admissable regions for o and ( for particular values of H, and can therefore be used to
analyze the boundedness of the system attitude motion.

Contours of V = H are shown in Fig. 4.18. For 'H < 3, the admissable regions of o and (3
are closed, and both o and 3 must be bounded for all time. For 3 < 'H < 4, the admissable
regions are open in the a-direction, but closed in the [-direction. This means that o may
grow unbounded for 3 < H < 4, but # must remain bounded for all time. For H > 4, it is
not possible to have V = ‘H and 7 must always be some positive value. This means that for
‘H > 4 the tether can never be stationary relative to the orbital frame and must therefore
be rotating in some sense.

™
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Figure 4.18: Contours of H for 7 =0

Now, consider the situation in which the system is nominally oscillating or spinning in the
orbit plane with some small initial out-of-plane deviations. In this case, H is

H = hcos® B(0) + 3(0)* + 4sin® 5(0)
where we have used the definition
h = &(0)* + 3sin® (0)

(4.135)

(4.136)
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because the pendular motion is ideally planar with energy level h, but there are small initial
out-of-plane deviations. The out-of-plane motion must remain bounded if H < 4, in which
case the maximum possible value of (3 is

) \/h0052 B(0) + ﬂO(O)2 + 4 sin? 5(0)
2

(4.137)

6max = sin~

Since we are assuming that the initial out-of-plane deviations are small, we can approximate

Brmas as
Bimaz /= sin~! (%ﬁ) (4.138)

So, for h > 4 it is possible for small initial out-of-plane deviations to grow unbounded,
but for A < 4 the out-of-plane motion must remain bounded. As indicated by the Floquet
analysis, the out-of-plane motion can grow quite large, but it must remain bounded for h < 4.
This means that the out-of-plane motion will not grow unbounded in the unstable regions
discovered previously in this section for systems with a positive in-plane rotation.

4.3.5 Summary of Computational Predictions

In this section we presented aspects of the lower-level computational model pertaining to the
pendular motion of the tether. Because the nominal pendular motion of the tether is a planar
spin, the equations governing the pendular motion were linearized about § = ﬁo = 0 and the
solution for the in-plane motion was determined analytically. This solution was then used
in the equation governing the out-of-plane motion, resulting in a Hill’'s equation. Floquet
theory was used to show that this equation is unstable for certain in plane spin rates, meaning
that the lower-level computational model predicts unstable out-of-plane motion for some
cases. The out-of-plane motion does not grow unbounded, however, due to the fact that the
equations governing the pendular motion are conservative. This fact was used to determine
approximate bounds on the out-of-plane motion for unstable cases. For relatively high in-
plane spin rates the Hill’s equation governing the small out-of-plane motion is accurately
approximated by a Mathieu’s equation for which approximate solutions were determined.
These approximate solutions take the form of linear combinations of four simple harmonic
oscillators, each with a different oscillation frequency and relative magnitude. Later in this
chapter, many of the results derived in this section using the lower-level system model are
compared to numerical solutions determined using the top-level computational model for the
purposes of validation.
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4.4 Computational Model: Transverse Vibrations of
the Tether

In this section we develop several aspects of the lower-level computational model related to
the transverse vibrations of the tether. The analysis of the transverse vibrations makes use
of some of the results related to the tether pendular motion presented in the previous section,
and many of the analysis methods that we apply to the transverse vibrations are similar to
those applied to the pendular motion. Unlike the results presented in the previous section,
the analytical results related to the tether transverse vibrations presented in this section are
not original contributions, in that they duplicate the results presented in Refs. [5] and [8].
The original contribution related to the tether transverse vibrations is provided in the next
section in which the top-level computational model is used to perform validation tests on
the results presented in this section.

4.4.1 Analysis Using Separation of Variables

As done in the analysis of the pendular motion of the tether, we assume that the out-of-
plane pendular motion is small. In addition, we assume that the transverse vibrations of the
tether are small relative to the length of the tether, such that v and v are small quantities.
Combining these assumptions, the equations of motion of the tether transverse vibrations
simplify to

2 — ya?
2y

—[(&+1)+3sina—1u=[(&+1)*+3cos’a — 1] [(

) u' — xu’] (4.139)

oo o 2 2 2 7'732 " /
v4v=[(@+1)°+3cos”a—1] 5 v — v (4.140)
Y

Note that because we assume that 3 is small, the solution for « is given by Eqs. (4.69) and
(4.70).

To analyze Eqs. (4.139) and (4.140) we apply the principle of separation of variables.” As-
sume solutions for u and v of the form
u(z,7) = Xu(x)F.(1) (4.141)
v(z,7) = X,(z)F,(7) (4.142)

where X, and X, are spatially-dependent mode shapes, and F,, and F, are time-dependent
functions. Using Eq. (4.141) in Eq. (4.140), we find that X, and F,, must satisfy

Fu_[(ooé—i_l)z—i_?)slnza_l]Fu:L 2_/}/.1'2 X//—xXI (4143)
[(@+1)2+3cos?a — 1]F, X, 2 “ “ '
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The left-hand side of Eq. (4.143) is a function of 7 only, and the right-hand side is a function
of z only. Because Eq. (4.143) must hold for all 7 and z, both sides of the expression must
be equal to the same constant, which we denote —\,,

F, - [(&+1)2+3sin*a —1]F, 1 2 — yx?
[(&+1)2+3cos2a—1]F, X,

- X' — X' | = —A, 4144
) - axt] (4.141)

From this point forward we refer to the constant A\, as an eigenvalue of Eq. (4.139). Using
Eq. (4.141) in the boundary conditions for u, we obtain
Xu(0)Fy (1) = Xu(H)Eu(1) =0 (4.145)

which must hold for all 7. From Eqs. (4.144) and (4.145), the mode shape X, must satisfy
the boundary value problem

(2 — v X! — 22X + 290, X, =0 (4.146)

Xu(0) =X,(1)=0 (4.147)

Note that Eq. (4.146) is a nonstandard form of the Legendre differential equation.” From
Eq. (4.144), the function F, must satisfy the differential equation

Fo+ [ = DG+ 12+ A+ DBcosa— 1) — 1]F, =0 (4.148)

Using Eq. (4.142) in Eq. (4.140) and following the procedure illustrated above, we find that
the mode shape X, must satisfy the boundary value problem

(2 — v X! — 2yw X! 4+ 29\, X, =0 (4.149)

X,(0)=X,(1)=0 (4.150)
and the function F, must satisfy the differential equation

oo

Fy+ Do(@+1)*+ A\(3cos*a — 1) + 1]F, =0 (4.151)

Note that the constant A, in Egs. (4.149) and (4.151) is an eigenvalue of Eq. (4.140).

Comparing Eqgs. (4.146) and (4.147) with Eqgs. (4.149) and (4.150) we see that the mode
shapes for v and v are governed by the same boundary value problem. Without loss of
generality, we can therefore define X (z) = X, (z) = X,(z) and A = A\, = \,, such that the
mode shapes for the transverse vibrations are governed by

(2 —y2H) X" — 2y2 X' +29AX =0 (4.152)

X(0)=X(1)=0 (4.153)
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and the solutions for v and v are written as

w(z,7) = X(x)F,(1) (4.154)
v(r,7) = X(x)F,(T) (4.155)

Using the assumed solution forms of Eqs. (4.154) and (4.155) we have separated the solutions
for the transverse vibrations into independent components. The spatially-dependent mode
shapes are governed by Eqs. (4.152) and (4.153), and the time-dependent functions are
governed by Egs. (4.148) and (4.151). Recalling that we have an exact solution for a because
B is assumed to be small, we can see that Eqs. (4.148) and (4.151) take the form of Hill’s
equations. Given an appropriate value of A\, we can use Floquet theory to analyze the
stability properties of Eqgs. (4.148) and (4.151), and thus the stability properties of the
tether transverse vibrations. To determine appropriate values of A\, we must analyze the
boundary value problem defined in Egs. (4.152) and (4.153).

4.4.2 Solution for the Mode Shapes

To determine an expression for the mode shapes of the transverse vibrations we assume a
solution in the form of a power series,

o0

X(x) = Z anx"” (4.156)

n=1

Note that the summation in Eq. (4.156) begins at n = 1 because the assumed solution form
for X must satisfy the boundary condition X (0) = 0. Using Eq. (4.156) in Eq. (4.152) and
collecting powers of x, we find that all a,, for even n must be zero and a; can be any nonzero
real number. Setting a; = 1, we find that a,, with odd n must satisfy

" e - _
a2n+1—(2n+1>!71_[1[2(2m)(2m 1) )\}, n=1,...,00 (4.157)

Using Eq. (4.157) in Eq. (4.156), the solution for X becomes

31
X(z) = z2F <017 92 55 57562) (4.158)

where o F} (a,b; c; z) is a hypergeometric function and

5 = STVIE+EA (4.159)

1
3+ 1+ 8\
gy — % (4.160)
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See Ref. [4] for an excellent discussion of hypergeometric functions. Applying the boundary
condition X (1) =0 to Eq. (4.158), we obtain

31
o F1 (01,02; 5> 57) =0 (4.161)

For any given value of v there exists an infinite number of positive values of A\ that satisfy
Eq. (4.161). Let these values of A be ordered in ascending order, and denote the n'* value as
An. For each \,, there exists a corresponding mode shape, X,,(z), that satisfies Eqgs. (4.152)
and (4.153).

Figure 4.19 shows a plot of the hypergeometric function in Eq. (4.161) for v = 1. By
determining the roots of this function, we find that the first four eigenvalues are \; = 7.72,
Ay = 31.72, A\3 = 71.72, and Ay = 127.72. The mode shapes corresponding to the first four
eigenvalues are plotted in Fig. 4.20. Note that the mode shapes are similar in quality to sine
waves.

2F1(01,02;3/2;y/2)

04 50 100 A 150 200 250

Figure 4.19: Plot of o F} (01, 09; %; %’y) fory=1

As v approaches 0, all of the eigenvalues approach infinity, and the mode shapes become
more like sine waves. This fact is illustrated by Fig. 4.21, which shows plots of the first four
mode shapes for v = 0.1. Note that the first four eigenvalues for this case are \; = 96.78,
Ao = 387.89, A3 = 873.06, \y, = 1552.3. As ~ approaches 2, the smallest eigenvalue, Aq,
approaches 1, and the mode shapes become less like sine waves. The first four mode shapes
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Figure 4.20: First four mode shapes of the tether transverse vibrations for v =1

for v = 1.9 are plotted in Fig. 4.22. The eigenvalues corresponding to these mode shapes
are A\ = 2.34, Ay = 10.45, \3 = 24.06, and Ay = 43.13. As Fig. 4.22 shows, the mode shapes
become skewed toward x = 1 as v approaches 2.

4.4.3 Floquet Analysis

Now that we have a means of determining the values of A\ for a given value of v, we return
our attention to Egs. (4.148) and (4.151). Using the solution for « defined in Eq. (4.69),
Eqgs. (4.148) and (4.151) are written as

Fy+pu(r)F, = 0 (4.162)

oo

Fy+po(T)F, = 0 (4.163)

where the periodic functions p, and p, are
pu(7) = A=D[EVRda(VhT, k) + 12+ A+ D)[3en®>(Vhr, k) — 1] —1 (4.164)
po(r) = NEVRdn(Vhr k) + 12+ ABen®(Vhr k) — 1] + 1 (4.165)

[k

Note that the “4” is for systems with a positive in-plane rotational rate, and the is for
systems with a negative in-plane rotation rate. As mentioned previously, Eqs. (4.162) and
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Figure 4.21: First four mode shapes of the tether transverse vibrations for v = 0.1
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Figure 4.22: First four mode shapes of the tether transverse vibrations for v = 1.9
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(4.163) are Hill’s equations, and their stability properties can be determined using Floquet
theory. These properties are dependent on the two free parameters in the equations: 1) the
eigenvalue \; and 2) the in-plane pendular motion energy constant h.

The stability properties of F,(7) and F,(7) for systems with a positive in-plane rotation rate
are illustrated by the plots in Fig. 4.23. In this study of the tether transverse vibrations
we do not consider systems with a negative in-plane rotation rate, or systems undergoing
oscillatory in-plane pendular motion. In the plots in Fig. 4.23, the shaded regions correspond
to unstable behavior, and the unshaded regions correspond to bounded, oscillatory behavior.
Note that the abscissa for both plots is 1/\, and the ordinate is 1/h. The plots are shown in
this manner so that the entire admissable region of A\ and h can be shown on a single plot. As
the plots show, there are distinct regions of instability in both F;, and F;, for relatively low
values of A and h. Recalling that \ approaches 1 as v approaches 2, these larger instability
regions correspond to slowly spinning systems in which the mass of the tether is much larger
than the mass of B. As both A\ and h increase—corresponding to increases in the mass of B
and the in-plane spin rate, respectively—the instability regions decrease in size to the point
that they practically vanish.

To better understand how the stability of the transverse vibrations is related to the plots
in Fig. 4.23, consider the plots in Fig. 4.24. These plots are the same as those in Fig. 4.23,
except that the first four eigenvalues for a system with v = 1.99 and h = 5 are each plotted
with an “x”. For any particular value of v, there is a minimum eigenvalue, A, corresponding
to the first mode of the transverse vibrations. The minimum eigenvalue in Fig. 4.24 is the
“x” farthest to the right because the abscissa of the plots is 1/A. For each higher-order
mode, there is a corresponding A, > Ay, and the location of the “x” corresponding to each
higher-order mode moves horizontally to the left on the plot as the mode number increases.
If any “x” lies in an unstable region for either F, or F,, then one of the modes of the
transverse vibrations is unstable. Because the transverse vibrations are a linear combination
of all of the modes, if one of the modes is unstable then the transverse vibrations on the
whole are unstable. Note that the case illustrated in Fig. 4.24 represents stable transverse

vibrations because none of the modes of the transverse vibrations lie in unstable regions for
F, or F,.

4.4.4 Summary of Computational Predictions

In this section we presented aspects of the lower-level computational model pertaining to
the transverse vibrations of the tether. The equations governing the transverse vibrations
were simplified by assuming small out-of-plane pendular motion of the tether, and that the
transverse vibrations are small relative to the length of the tether. The resulting simplified
equations were analyzed using separation of variables, and the mode shapes for the transverse
vibrations were determined. Using the solution for the in-plane pendular motion derived in
the previous section and the solution for the mode shapes, the stability properties of the
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transverse vibrations were analyzed using Floquet theory.

The lower-level computational model predicts distinct regions of transverse vibration insta-
bility for certain types of systems. The largest regions of instability correspond to systems
with relatively low values of A and h. A low value of h means that the in-plane spin rate is
relatively low, which could apply to any type of spinning TSS. Low values of A correspond
to systems with values of v near 2 because \; approaches 1 as v approaches 2, and )y is
the minumum eigenvalue for a given value of v. As mentioned previously, a v near 2 means
that the mass of the tether is much greater than the mass of B, so the lower-level compu-
tational model predicts that these types of systems have the largest range of configurations
that experience unstable transverse vibrations. As both A and h increase, the instability
regions decrease in size and become virtually nonexistent. This means that the lower-level
computational model predicts that systems with a relatively high in-plane spin rate and large
secondary end body mass will practically never experience unstable transverse vibrations. In
the next section, we use numerical solutions determined using the top-level computational
model to perform validation tests on these results related to the stability of the transverse
vibrations of the tether.

4.5 Validation of the Computational Model

In §4.3 and §4.4 we developed several elements of the lower-level computational model related
to the dynamics of the tether in a spinning TSS. Specifically, we showed that the lower-level
model predicts that both the pendular motion and elastic vibrations of the tether are unsta-
ble for certain system configurations, and we also determined approximate solutions for the
out-of-plane pendular motion for systems with a relatively high in-plane spin rate. In this
section we apply the model validation procedure outlined in Ch. 2 to these computational
predictions. For any results that are not validated through the application of this proce-
dure, we perform an analysis of the modeling assumptions used in the lower-level model to
determine how the model should be altered to produce better agreement with the top-level
computational model.

4.5.1 Pendular Motion of the Tether

The lower-level computational model predicts that the out-of-plane pendular motion of the
tether is unstable for certain ranges of the the parameter h, which is a measure of the
energy of the in-plane pendular motion. For relatively large values of h, the out-of-plane
pendular motion is predicted to be stable and oscillatory, and approximate solutions for the
out-of-plane motion can be expressed as finite sums of simple harmonic oscillators. These
computational predictions are now compared to the top-level computational model for the
purposes of validation; however, validation tests are only performed on the results that are
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applicable to spinning systems with a positive spin rate. These types of systems are the
most likely to be used in an actual application, so we confine our attention to them.

Out-of-Plane Instabilities

Figure 4.25 shows the out-of-plane pendular motion predicted by the top-level computational
model for a system with initial conditions corresponding to h = 3.5. The system parameters
and initial conditions used to generate this numerical solution are listed in Tables 4.4 and
4.5, respectively. Note that the values of mpg, p, and L used correspond to v = 0.4, and that
the quantities 249 and f(0) are defined as

_ M
Qa0 = 2(0)? (4.166)
£(0) = [@(0) + Qag)? cos® 3(0) + B(0)? + Q% [3 cos® a(0) cos® 3(0) — 1] (4.167)

The lower-level computational model predicts that the out-of-plane pendular motion for this
system is unstable, and the top-level computational model makes a similar prediction. As
mentioned in §4.3, the out-of-plane motion is not “unstable” in the strictest sense of the
word; however, a small initial value of # does grow quite large in a relatively small number
of orbits of the system. This result indicates that the predictions made by the lower-level
computational model apply to the top-level model, and are therefore validated. Before we
make this conclusion, however, we must perform several more validations test for systems
with different values of A and different system parameters.

Table 4.6 displays the results of a number of additional validation tests. As shown by the
table, these tests were performed at a number of points inside the range of h predicted by
the lower-level computational model to result in instability. For each value of h tested, the
value of v for the system was also varied across the feasible range. The value of ~ was
varied by varying mp while holding p and L constant. The system parameters and initial
conditions used in all of these additional tests are listed in Tables 4.4 and 4.5. For all
of the additional tests performed, the out-of-plane instability predicted by the lower-level
computational model is also predicted by the top-level computational model. We must note,
however, that the growth of 3 becomes less significant as the boundaries of the instability
region are approached. This fact is particularly true as h approaches the lower boundary
of 3.36. In any case, the agreement between the lower- and top-level computational models
over the entire predicted instability region for a wide range of system parameters means
that the lower-level predictions are validated. A spinning TSS with a positive in-plane spin
rate corresponding to h between 3.36 and 3.55 is expected to experience large growth in the
out-of-plane pendular motion.
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Figure 4.25: Out-of-plane pendular motion of the tether predicted by the top-level compu-
tational model for h = 3.5 and v = 0.4
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Table 4.4: System parameters used in validation tests for the instabilities in the out-of-plane

pendular motion of the tether

Primary End Body A

ma (kg) 50,000
I5 (kg-m?) diag (30,000 40,000 50,000)
Pa (m) (001)*
Secondary End Body B
ms (ke) (%) ot
Ig (kg-m?) diag(300 400 500)
pp (m) (000)"
Tether
L (km) 20
p (kg/km) 2.5
EA (N) 55,000
c (s) 0.5
N, 4
Central Body
p (km?/s?) 3.986 x 10°
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Table 4.5: Initial conditions used in validation tests for the instabilities in the out-of-plane

pendular motion of the tether

System Orbital Motion

a (km) 6,770
e 0.001
Q (deg) 300
I (deg) 50
w (deg) 45
v (deg) 0
A Attitude Motion
a 000"

(0 VR Qa0 0)F

B Attitude Motion

(1000)T
(0 vVh Qa0 O)F

Pendular Tether Motion

a (deg) 0
B (deg) 1°
d (deg/s) Vh Qg
B (deg/s) 0
Tether Elastic Vibrations
u(5,0) (m) 20sin (2%)
4(5,0) (m) 0
v(5,0) (m) 20sin ()
0(5,0) (m) 0
w(5,0) (m) IO -3(3)
i(5,0) (m) 2L fO) |5 -2(3)
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Table 4.6: Results of validation tests for the instabilities in the out-of-plane pendular motion
of the tether

h v=01 ~=04 ~=1 vy=16 ~=19
3.37 unstable unstable unstable unstable unstable
3.39 unstable unstable unstable unstable unstable
3.41 unstable unstable unstable unstable unstable
3.43 unstable unstable unstable unstable unstable
3.45 wunstable unstable unstable unstable unstable
3.46 wunstable unstable unstable unstable unstable
3.48 wunstable unstable unstable unstable unstable
3.50 wunstable unstable unstable unstable unstable
3.52 unstable unstable unstable unstable unstable
3.54 unstable unstable unstable unstable unstable

Approximate Solutions for the Out-of-Plane Motion

Figure 4.26 shows the predictions for the out-of-plane pendular motion made by the lower-
and top-level computational models for a system with h = 25. The value of 7 for the top-level
model is 0.4, and the system parameters and initial conditions used for the top-level model
are listed in Tables 4.4 and 4.5. As shown by Fig. 4.26(a), over the first orbit of the system
the approximate solution determined using the lower-level computational model is virtually
identical to the prediction made by the top-level computational model. However, the two
predictions begin to diverge as the solution time span increases. This fact is illustrated by
Fig. 4.26(b), which shows the two predictions over the tenth orbit of the system. As the
figure shows, a slight phase difference has developed between the two predictions, and the
phase difference grows as the solution time span increases. This result indicates that the
approximate solutions for [ determined using the lower-level system model provide good
qualitative and short-term quantitative predictions, but cannot be used to make long-term
quantitative predictions about the out-of-plane pendular motion of the tether.

To further substantiate the claim about the validity of the approximate solutions made
above, several more validation tests for the approximate solutions were performed. In these
tests, a Fourier analysis was used on the numerical solutions determined using the top-
level computational model to determine the two most dominant frequencies of the motion.
These two frequencies are then compared to the two most dominant frequencies contained
in the approximate solutions. Recall that for systems with a positive in-plane spin rate, the
lower-level model predicts that the two most dominant frequencies are w, and w3 as defined
by Eq. (4.127). The results of the Fourier analysis are listed in Table 4.7. Note that the
frequencies listed in Table 4.7 have been nondimensionalized by the quantity €249. Also note
that there is no variation in the frequencies predicted by the top-level computational model
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Figure 4.26: Comparison of computational predictions of § made by the top- and lower-level
computational models for h = 25 and v = 0.4
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as 7y is varied. The frequencies listed in Table 4.7 are plotted against those predicted by the
lower-level computational model in Fig. 4.27. As the plot shows, the frequencies predicted
by the approximate solutions are close, but not exactly equal to, those predicted by the
top-level computational model. These small differences explain why the two predictions
are close over short time spans but diverge over large time spans. To better understand the
reasoning behind this behavior, imagine a system for which the exact solution is sin(¢) and the
approximate solution is determined to be sin(0.999¢). The difference between the exact and
approximate solutions is only 0.1%, but the small difference will nonetheless accumulate over
time and result in the type of phase difference seen in Fig. 4.27. So, while the approximate
solutions for # do not provide accurate long-term qualitative predictions, they do provide
accurate qualitative predictions of the out-of-plane pendular motion of the tether.

Table 4.7: Nondimensional oscillation frequencies for the out-of-plane pendular motion of
the tether predicted by top-level computational model

First Frequency wo
h vy=01 =04 =1 =16 =19
10 4.00 4.00 4.00 4.00 4.00
25 6.00 6.00 6.00 6.00 6.00
50 8.00 8.00 8.00 8.00 8.00
100 11.00 11.00 11.00  11.00 11.00
Second Frequency ws
h vy=01 =04 =1 =16 =19
10 1.75 1.75 1.75 1.75 1.75
25 3.75 3.75 3.75 3.75 3.75
50 6.00 6.00 6.00 6.00 6.00
100 8.75 8.75 8.75 8.75 8.75
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top- and lower-level computational models
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4.5.2 Transverse Vibrations of the Tether

The lower-level computational model predicts that the transverse vibrations of the tether
are unstable for certain ranges of the parameters h and «. For a given combination of h and
v, one or more modes of either u or v is predicted to be unstable, resulting in instability of
the transverse vibrations on the whole. These computational predictions are now compared
to the top-level computational model for the purposes of validation. As with the validation
tests performed on the results related to the pendular motion of the tether, validation tests
for the tether transverse vibrations are only performed for systems with a positive in-plane
spin, as these are the types of systems that would actually be utilized in practice.

Figure 4.28 shows the transverse displacements at the tether midpoint (§ = %L) predicted by
the top-level computational model for two cases in which the lower-level computational model
predicts unstable transverse vibrations. The system parameters and initial conditions used
to generate these solutions are listed in Tables 4.8 and 4.9, respectively. Figure 4.28(a) shows
u at the tether midpoint predicted by the top-level computational model for a system with
initial conditions and physical parameters corresponding to h = 5 and v = 1.3939. For such
a system, the lower-level computational model predicts that the first mode of u is unstable,
meaning that u at the tether midpoint should grow over time. As Fig. 4.28(a) shows, the
top-level computational model predicts quite different behavior, in that u at the tether
midpoint remains bounded. Figure 4.28(b) shows v at the tether midpoint predicted by the
top-level computational model for a system with initial conditions and physical paramters
corresponding to h = 5 and 7 = 1.64138. The lower-level computational model predicts that
the first mode of v is unstable for such a system, meaning that v at the tether midpoint
should grow over time. As shown by Fig. 4.28(b), we once again find that the top-level
computational model provides a clearly different prediction, in that v at the tether midpoint
remains bounded. The results shown in Fig. 4.28 indicate that the predictions made by the
lower-level computational model related to the stability of the tether transverse vibrations
are erroneous because they do not agree with the top-level computational model. Before we
can make this claim, however, we must perform more validation tests over a wider range of
the instability regions predicted by the lower-level computational model.

Figure 4.29 shows the points in the 1/v —1/h plane for which the additional validation tests
are performed. Each test point is marked with a “x”, and each point lies in a region of
instability predicted by the lower-level computational model. The results of the additional
validation tests are listed in Table 4.10. This table lists the values of h and A, used in
the validation tests, along with the value of n for the predicted unstable mode and the
corresponding value of . For all of the additional validation tests performed, the first mode
is the predicted unstable mode. As Table 4.10 shows, the transverse vibrations predicted
by the top-level computational model for all of the additional tests are stable, in direct
disagreement with the predictions made by the lower-level computational model. These
results confirm the previous assertion that the predictions of the lower-level computational
model are erroneous, and cannot be used to make predictions about the physical system.
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Figure 4.28: Transverse vibrations at the tether midpoint predicted by the top-level compu-
tational model
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Table 4.8: System parameters used in validation tests for the instabilities in the transverse
vibrations of the tether

Primary End Body A

ma (kg) 50,000
I5 (kg-m?) diag(30,000 40,000 50,000)
Py (m) 00 1)
Secondary End Body B
mp (kg) (22_—77> pL
Ig (kg-m?) diag(300 400 500)
Py (m) (000)T
Tether
L (km) 20
p (kg/km) 2.5
EA (N) 55,000
¢ (s) 0.5
N, 10
Central Body
p (km?/s?) 3.986 x 10°

One important point we must address related to the validation tests for the tether transverse
vibrations is that few or no tests are performed in the largest instability regions, as can be
seen by studying Fig. 4.29. The reason for this lack of tests is that the largest instability
regions correspond to instabilities in the first vibration mode of systems with v approaching
2, meaning that mp is quite small. An actual spinning T'SS would not likely have small
secondary end masses corresponding to such values of v, so no tests are performed in these
regions.

Because the predictions made by the lower-level computational model do not agree with
those made by the top-level computational model, the lower-level model is not validated and
must be altered in some way to achieve better agreement with the top-level model. In what
follows, we present an analysis of the modeling assumptions used in the formulation of the
lower-level model to determine exactly how the lower-level model should be changed so that
it provides better predictions related to the transverse vibrations of the tether.
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Table 4.9: Initial conditions used in validation tests for the instabilities in the transverse of

the tether

System Orbital Motion

a (km) 6,770
e 0.001
Q (deg) 300
I (deg) 50
w (deg) 45
v (deg) 0
A Attitude Motion
da (1000)"

(0 VR Qa0 O)F

B Attitude Motion

(1000)T
(0 VR Qa0 0)F

Pendular Tether Motion

a (deg)

B (deg) 1°
& (deg/s) Vh Q0
3 (deg/s) 0

Tether Elastic Vibrations

u(s,0) (m) 20sin ()
4(5,0) (m) 0
v(8,0) (m) 20sin ()
0(5,0) (m) 0
w(s,0) (m) DEFO) -2 (2)
w(8,0) (m) SR f(0) |5 -2 (3)
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Figure 4.29: Points in the 1/y — 1/h plane used for validation tests for the transverse
vibrations of the tether
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Table 4.10: Parameters used in the validations tests for the transverse vibrations of the
tether

u Validation Tests

h An n vy Stable/Unstable
3.6 6.37 1 1.15113 stable
3.6 4.26 1 1.48711 stable
3.6 2.63 1 1.84088 stable
5 4.76 1 1.3939 stable
5 2.78 1 1.80782 stable
10 3.2 1 1.71289 stable
v Validation Tests
h An n v Stable/Unstable
3.33 4.38 1 1.4639 stable
3.33 2.38 1 1.89303 stable
4 2.99 1 1.7605 stable
5 3.52 1 1.64138 stable
10 2.10 1 1.94384 stable

4.5.3 Analysis of Modeling Assumptions

The modeling assumptions used to formulate the lower-level computational model used in
this chapter are presented in §4.1, and their mathematical representations are presented in
§4.2. One of the most important modeling assumptions is related to the tension in the tether.
Recall that in the top-level model the tension in the tether is related to the geometry of the
tether according to Eq. (3.32). In the lower-level model, however, we assume that the tension
is independent of the tether geometry, and is given by Eq. (4.43), which is the tension in
an equivalent rigid tether. The tension in the tether directly affects the frequencies of the
transverse vibrations, and is a contributing factor in the parametric resonances that cause
the instabilities predicted by the lower-level computational model. We therefore begin our
analysis of the lower-level modeling assumptions by considering the approximation used for
the tether tension.

The tension approximation given by Eq. (4.43) is analyzed as follows. Numerical solutions
are determined using the top-level computational model, and the tension in the tether at any
point in time is calculated using Eq. (3.32). At each point in time, the numerical solution
is also used with Eq. (4.43) so calculate the approximate tension. An average percent error
between the two tension predictions is then calculated as

1 Atk T(5,t) — Topp(5,1)
= — — 100 ’ aPPAT ds dt 4.168
% error AT /0 ‘ T Got) 5 ( )
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where At is the solution time span, T'(s,t) is the tension predicted by the top-level compu-
tational model, and Ty,,(5,t) is the tension predicted by the approximation of Eq. 4.43.

Figure 4.30 shows comparisons made using the above described procedure for a number of
different values of h and . The system parameters and initial conditions used to make these
comparisons are the same as those listed in Tables 4.8 and 4.9, and the simulation time span
is 5 orbits of the system. As the figure shows, the error between the two tension predictions
is on the order of 1% for all of the comparisons made. We note, however, that there is a
sharp increase in the difference between the two models for h = 3.33 and v = 1.9. The
relatively small differences illustrated by Fig. 4.30 indicate that the tension approximation
given by Eq. (4.43) is reasonably accurate, and is most likely not the primary cause of
the erroneous results predicted by the lower-level computational model. Small differences
in tension will produce qualitative differences between the predictions made by the two
models, such as differences in vibration frequencies, but these differences are likely not the
cause of the significant qualitative differences in the predictions. We must note, however,
that some of the largest differences in the tension are seen for systems wiht low A and ~
near 2, which are the types of systems for which the instability regions predicted by the
lower-level computational model are the largest. The tension differences for such systems
may therefore play a more significant factor in the differences in the predictions made by the
models, but they are still unlikely to the the primary cause of the differences.

3.5

Percent Error

Figure 4.30: Comparison of tension in the tether predicted by the top- and lower-level
computation models
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The next modeling assumption that we consider is related to the pendular motion of the
tether. In the top-level model, the pendular motion and elastic vibrations of the tether are
coupled, such that the pendular motion affects the elastic vibrations and vice versa. In the
lower-level model, however, we assumed a one-way decoupling in which the pendular motion
affects the elastic vibrations, but the elastic vibrations have no affect on the pendular motion.
As a result, the equations governing the pendular motion are the same as an equivalent
system with a rigid tether.

This assumption related to the pendular motion of the tether is analyzed as follows. First,
the top-level computational model is used to produce a numerical solution for the motion
of the system. Next, a “modified” top-level computational model is used to produce a
numerical solution for the same system, and the predictions made by the two models are
compared. The modified top-level computational model is identical to the original top-level
computational model is every way, except that Eqgs. (4.16) and (4.17) are used to model the
pendular motion of the tether instead of Egs. (3.69) and (3.70). The only difference between
the predictions made by the two models can therefore be directly attributed to the way in
which the pendular motion of the tether is modeled.

Figure 4.31 shows two comparisons made using the procedure described above. The system
parameters and initial conditions used in these comparisons are once again the same as those
listed in Tables 4.8 and 4.9. Figure 4.31(a) compares the predictions made of u at the tether
midpoint for systems correpsonding to h = 5 and 7 = 1.3939. Recall that the lower-level
computational model predicts that u is unstable for such a system. As the figure shows,
the predictions made by the two models are drastically different—the original top-level model
predicts bounded oscialltory motion (as discussed previously in this section), but the modified
model predicts the type of growth predicted by the lower-level model. Note that the vibration
frequencies predicted by the two models are also quite different. The same types of dramatic
qualitative differences are also seen when we compare predictions for v. Figure 4.31(b)
compares the predictions made of v at the tether midpoint for h = 5 and v = 1.644138,
which is a system for which the lower-level computational model predicts unstable v. Unlike
the predictions made for u, in this case the modified top-level computational model does not
predict the growth predicted by the lower-level model; however, there are still significant
qualitative differences between the predictions made by the original and modified top-level
models. Specifically, both the frequency and amplitude of the vibrations are different, with
the most drastic difference occuring in the frequency.

A possible physical explanation for the differences in the predictions made by the lower-
and top-level computational models is related to the energy of the system. In the top-
level model, there is a full coupling between the two modes of the tether motion, so that
energy can be freely exchanged between the pendular motion and elastic vibrations. In the
lower-level model, however, the one-way decoupling means that no energy can be transferred
from the pendular motion to the transverse vibrations. The energy of the pendular motion
remains constant, and does not vary as the tether deforms and vibrates as happens in the
top-level model. In affect, the model contains an artificial energy source that holds the
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energy of the pendular motion at a constant level. Because the pendular motion drives the
transverse vibrations, this artificial energy source in the pendular motion could certainly
have a significant impact on the stability properties of the transverse vibrations.

Whatever their cause, the significant qualitative differences illustrated by Fig. 4.31 indicate
that modeling the pendular motion of the tether using Eqs. (4.16) and (4.17) has a significant
affect on the predictions of the tether transverse vibrations. It is quite unlikely that two
computational models that demonstrate the qualitative differences seen in Fig. 4.31 will have
the same stability properties, so we conclude that the way in which the pendular motion
is modeled is one of the, if not the, most significant factors contributing to the erroneous
predictions made by the lower-level computational model. Any future study of the tether
transverse vibrations made using a lower-level model must take into account the full coupling
between the pendular motion and transverse vibrations of the tether.

Several other modeling assumptions may also contribute to the significant differences be-
tween the predictions made by the top- and lower-level computational models. First, the
effects of the longitudinal vibrations of the tether may lead to significant differences between
the models-recall that the longitudinal vibrations are neglected in the lower-level model.
Previous studies of axially extensible tethers have shown that the longitudinal vibrations are
coupled to the in-plane pendular motion of the tether,'? ¢ which in turn drives the transverse
vibrations. Considering the effects of the longitudinal vibrations may therefore be necessary
to accurately predict the stability properties of the transverse vibrations. Other modeling
assumptions that may contribute tot he differences between the two models are constraining
the system to an unperturbed circular orbit, modeling the end bodies as point masses, and
assuming that gravity varies linearly over the length of the tether. For typical TSS, however,
the differences in the predictions caused by these assumptions are most likely insignificant
compared to the differences caused by the assumptions discussed previously.

4.6 Summary

In this chapter we used a lower-level computational model to make predictions related to
the pendular motion and transverse elastic vibrations of the tether in a spinning TSS. The
lower-level model is a simplification of the top-level model that is intended to isolate the
dynamics of the tether, which are assumed to be the only relevant dynamics in the system.

The equations governing the pendular motion of the tether in the lower-level model are the
same as those of an equivalent system in which the tether is rigid. These equations were
linearized about a nominal planar spinning motion and an exact analytical solution for the
in-plane motion was determined in terms of Jacobi elliptic functions. Using the solution for
the in-plane motion in the linearized equation for the out-of-plane pendular motion results
in a Hill’'s equations, the stability properties of which were analyzed using Floquet theory.
For certain in-plane spin rates the out-of-plane pendular motion was found to be unstable,
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in that a small initial out-of-plane deviation grows large over time. The unstable growth
is not necessarily unbounded, however, and the conservative nature of the system was used
to place bounds on the out-of-plane motion. For relatively high in-plane spin rates the
out-of-plane pendular motion is stable, and approximate solutions were derived that are
linear combinations of four simple harmonic oscillators. Note that the results related to the
stability of the out-of-plane motion and the approximate solutions for high in-plane spin
rates are original contributions of this work.

The equations governing the transverse elastic vibrations of the tether in the lower-level
model are partial differential equations with time and arclength along the tether as inde-
pendent variables. As done in the analysis of the pendular motion, these equations were
linearized about a nominal planar spinning motion, resulting in decoupled, linear, partial
differential equations. The method of separation of variables was applied to these equations,
and the mode shapes for the transverse vibrations were determined in terms of a hypergeo-
metric function. The eigenvalues for the vibration modes and the solution for the in-plane
pendular motion were then used in the equations governing the temporal components of
the solutions for the transverse vibrations, resulting in Hill’s equations. Floquet theory was
used to show that the transverse vibrations are unstable for certain combinations of in-plane
spin rate and system mass distribution, with the largest instability regions corresponding to
systems with low in-plane spin rates and low secondary end mass relative to the tether mass.
Note that these results related to the stability of the transverse vibrations duplicate those
presented in Refs. [5] and [§].

The computational model validation procedure presented in Ch. 2 was applied to the predic-
tions made by the lower-level computational model related to the pendular motion and elastic
vibrations of the tether. The instabilities in the out-of-plane pendular motion predicted by
the lower-level model were also predicted by the top-level model for a wide range of system
parameters. These results are therefore considered validated, and we can expect a spinning
TSS to experience unstable out-of-plane pendular motion for certain ranges of in-plane spin
rate. The approximate solution for the out-of-plane pendular motion for high in-plane spin
rates also compares favorably to predictions made by the top-level computational model. The
approximate solutions accurately capture the qualitative characteristics of the out-of-plane
pendular motion, and also provide accurate short-term quantitative predictions. However,
the approximate solutions become less quantitatively accurate over expanding time scales,
and should not be used for long-term quantitative predictions.

Unlike the predictions made by the lower-level computational model related to the pendular
motion of the tether, the predictions of unstable transverse vibrations were not predicted by
the top-level computational model. A number of validation tests were performed for several
systems predicted to experience unstable transverse vibrations, and in all cases the top-level
computational model predicted that the transverse vibrations remain bounded. The lower-
level computational model is therefore not validated in this case, and must be altered in some
way to achieve better agreement with the top-level computational model. An analysis of the
modeling assumptions used to formulate the lower-level model showed that the assumption
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of a one-way coupling between the pendular motion and transverse vibrations is the most
likely cause of the erroneous predictions. Any further study of the transverse vibrations of
the tether must therefore relax this assumption.

The results of the validation tests on the predictions of instability in the tether transverse vi-
brations clearly demonstrate the necessity of performing some form of validation on results
obtained from lower-level computational models. These results are undoubedtly mathe-
matically correct, and, as mentioned several times in this dissertation, have been reported
previously in the literature. The mathematical correctness of a prediction, however, does
not guarantee that it can be applied to the particular physical system of interest, as demon-
strated by the work presented in this chapter. The applicability of a prediction made by a
lower-level computational model can only be determined by validating it against data that is
believed to sufficiently represent the behavior of the actual physical system. In the absence
of experimental data, we believe that the validation procedure presented in Ch. 2 and applied
in this chapter is the best available option.



Chapter 5

Control of Spinning Tethered Satellite
Systems

In Ch. 4 we presented a detailed analysis of the motion of the tether in a spinning TSS. A
lower-level computational model was used to analyze both the pendular motion and trans-
verse elastic vibrations of the tether, and the computational model validation procedure
outlined in Ch. 2 was used to validate the predictions pertaining to the pendular motion.
The dynamic analysis of the pendular motion presented in Ch. 4 is fairly complete, so the
natural next step in the analysis of the pendular motion is to develop methods of controlling
such motion.

In this chapter we considered numerous methods of controlling the pendular motion of the
tether in a spinning TSS. Because the nominal motion of a spinning TSS is in the orbit plane,
all of the control developments drive the tether to a planar pendular motion. We begin the
control developments by considering the possibility of controlling the pendular motion using
electrodynamic thrusting as the only control actuator. A nonlinear controllability analysis
is used to show that such control is not possible, and other means of control actuation must
be employed. Several different nonlinear control design techniques are then used to develop
control laws that drive the system to a desired planar motion. All of these control laws are
developed using a lower-level computational model, so they are also applied to the top-level
computational model to assess their applicability and effectiveness.

5.1 Physical System and Conceptual Model

The physical system and conceptual model considered in the control analysis are the same
as those used in the dynamic analysis presented in Ch. 4. See §4.1 for a complete description
of these elements of the system model. One of the key assumptions utilized in the control
developments that follow is that the elastic vibrations of the tether have no effect on the

160
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pendular motion of the tether. This assumption allows us to use a greatly simplified math-
ematical model of the pendular motion to develop control laws. One final element of the
conceptual model we must consider that is not discussed in §4.1 is related to the magnetic
field of the central body: because we consider the possibility of controlling the pendular mo-
tion using electrodynamic thrusting, we must have a conceptual model of the magnetic field
of the central body. As done for the top-level system model, we assume that the magnetic
field is a tilted dipole that is fixed to the central body as it rotates.

5.2 Mathematical Model

Because the conceptual model used in the control analysis is the same as that used in Ch. 4,
the mathematical model used in this chapter is virtually identical to the one derived in
Sec. 4.2. However, we only need to consider the equations governing the pendular motion of
the tether (which are not affected by the transverse elastic vibrations of the tether), and we
must modify the pendular equations of motion to include methods of control actuation.

As shown in §4.2.3, the equations of motion governing the pendular motion of the tether can
be expressed as in Eq. (4.11). In §4.2.3, the external moment acting on the system about A,
1\7IA, is due to the gravity-gradient moment only. We must now modify M, to include the
effects of electrodynamic forcing and other methods of control actuation.

The moment about A due to the electrodynamic force can be expressed as
— L —
MEA:/ rx (idr x B) (5.1)
0

where i is the current in the tether and B is the magnetic field vector. Assuming that
the elastic vibrations of the tether have a negligible influence on the total electrodynamic
moment, we make the approximations

5€3

=l
¢

dr =~ d§é3

such that Eq. (5.1) becomes
— L —
MEA = / §é3 X (Z d§é3 X B) (54)
0

Expressing B relative to Fp as

]§ - Blél + BQéQ + Bgég (55)

L L
MEA = —Z (/ §Bl dS) él —Z (/ §B2 dS) ég (56)
0 0

we have
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Note that we have assumed that i is constant along the length of the tether, as done in the
top-level model.

Letting the moment about 4 due to any other external forces be
Mar = Mari1€1 + Mapa€: (5.7)

(there can be no moment about the &3 axis because the system has no dimension about that
axis) and making use of the gravity-gradient moment expression defined in Eq. (4.15), the
total external moment acting on the system about A can be written as

My = Mu1é; + Masés (5.8)
where

L

My, = 31407 cos® asinfBcosf —i (/ 5B, ds) + Mar: (5.9)
0
L

My = —BIAQE, sina cosacos 3 — i (/ 5By ds) + Mars (5.10)

0

Using Egs. (5.9) and (5.10) in Eq. (4.11), the equations of motion governing the pendular
motion of the tether are

: L
. M
Grcos B — 2(é + Q4)Bsin B+ 3Q7% sin acos a cos f = —]Z—A (/ 5B, ds) + IZFQ (5.11)
0

M s

A

, L
B+ [(& + Q4)? + 3Q% cos® a] sin B cos 3 = ]L </ 5B, d§> — (5.12)
0

A

Making use of several of the nondimensional quantities defined in §4.2.5, Egs. (5.11) and
(5.12) are cast in nondimensional form as

1
acosf—2(a+1)Bsinf + 3sinacosacos f = —e/ 2xby dz + U (5.13)
0

1
B+ [(&+1)* + 3cos® o] sin B cos 3 = e/ 2zby dx + ug (5.14)
0

where we have defined the quantities

¢ = E(“—M) (5.15)

204 \ 1
7,3
b — (_A) B, (5.16)
129.%
Mo
. = 5.17
" T4 (5.17)
M
ug = ——21 (5.18)
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Note that py is the strength of the magnetic dipole of the central body.

Equations (5.13) and (5.14) are the equations used in the remainder of this chapter to develop
methods of controlling the pendular motion of the tether. The control inputs are taken to
be €, which is related to the electrodynamic force acting on the tether, and u, and ug, which
are related to any non-electrodynamic moments acting on the system. Modulation of € can
be achieved by changing the current in the tether, possibly by means of a variable resistor
or on-board voltage source. The physical source of the inputs u, and ug is assumed to be
arbitrary at this point; however, we do note that these inputs would most likely be provided
by small thrusters on the secondary end body.

5.3 Computational Model: Control of Pendular Mo-
tion

In this section we use Egs. (5.13) and (5.14) along with various nonlinear control design
techniques to develop methods of controlling the pendular motion of the tether. Because
the nominal pendular motion of a spinning TSS is in the orbit plane, we desire control
laws that drive 8 and 60 to zero while driving the in-plane pendular motion to a desired
reference trajectory. We begin the control analysis by studying the feasibility of performing
such control maneuvers using the electrodynamic force as the only control actuator. This
analysis serves to motivate the control law developments presented later in this section.

5.3.1 Controllability Using Electrodynamic Forcing

If the electrodynamic force is allowed to be the only control input, the equations of motion
governing the pendular motion of the tether become

1
acosff—2(a+1)Fsin G+ 3sinacosacos § = —e/ 2xby dx (5.19)
0

1
B4 [(&+1)* + 3cos® a] sin Bcos 3 = e/ 22by dx (5.20)
0

At this point we make several assumptions related to the magnetic field of the central body
designed to simplify the electrodynamic moment expressions in Egs. (5.19) and (5.20). The
objective of the current analysis is to demonstrate the inherent difficulties in controlling the
pendular motion of the tether using electrodynamic forcing only, and the conclusions of this
analysis are valid for general magnetic field models. We therefore use the simplest possible
representation of the magnetic field: a nontilted, nonrotating dipole. We further assume
that the circular orbit of A is constrained to the plane of the magnetic equator. Under



164

these assumptions, the unit dipole axis is aligned with the orbit normal direction, and the
magnetic field vector at any point along the tether is
B = K,
T
T (5.21)
7 R . an
= —(cos fé; + sin 3e3)
T'r

where rr is the orbital radius of a differential tether element, ds. Because the length of the
tether in a typical TSS is much smaller than the orbit radius of the system, we linearize
Eq. (5.21) about the position of A to obtain

B = u—3M(1 — 30z cos a cos 3)(cos [fés + sin fe3) (5.22)

A

where we have defined the nondimensional parameter

L
(== 5.23
= (5.29
From Eq. (5.16), we have b; = 0 and
by = (1 — 30z cos o cos 3) cos 3 (5.24)

Using these quantities in Eqgs. (5.19) and (5.20), the equations governing the pendular motion
of the tether become

acosf—2(a+ 1)ﬁosinﬁ + 3sinacosacos f = —e(1 — 20 cos acos [3) cos 3 (5.25)
Oﬁo+ [(&+1)* + 3cos® a]sin Bcos B =0 (5.26)

The controllability analysis of Eqgs. (5.25) and (5.26) requires that they be in state-space
form. Define the state vector

x=(a 5 a 5)T (5.27)
the control input u = €, and the quantities
a
£(x) = s (5.28)

2(a+ 1)50tanﬁ — 3sinacosa
—[(& + 1)? + 3 cos? a] sin B cos 3

0
0

20 cosacos 3 — 1
0

g(x) = (5.29)



165

Using these definitions, Eqgs. (5.25) and (5.26) are rewritten as
x = f(x) + g(x)u (5.30)
Equation (5.30) is the standard form for a single-input nonlinear control system.

According the nonlinear control theory,?®4%% the system defined by Egs. (5.28-5.30) is
accessible in a region D C R* of the state-space if the matrix

C=[g [fg [LIfg] [f[E[Eg] ] (5.31)
is full-rank at every point in D, where the Lie bracket [a, b] is defined as

ob Oa
bj]=—a—-—b 32
a.b] = 2 " (532
(See Corollary 3.11 of Ref. [42].) Another way of stating this accessibility condition is that
the determinant of C must be nonzero at every point in D. Using Egs. (5.28) and (5.29) in

Eq. (5.31) to form C and taking its determinant, we obtain

|IC| = —(1 —2¢cosacos B)* (& + 1)? [(5 + 3 cos(2a) + 26/(& + 2)) sin®(283) + 8502} cos” 3

(5.33)
From Eq. (5.33), we can see that there are a number of states that result in the determinant
of C becoming 0, meaning that the system is not accessible. Because the system is not
accessible, it is also not controllable. Most notably, any motion in the o — & plane (corre-
sponding to [ = ﬁo = 0) is not accessible. This makes sense physically, because motion in
the o — & plane results in an electrodynamic force in the o — & plane as well, and 3 cannot
be controlled.

The above analysis illustrates the inherent difficulty of controlling the pendular motion of the
tether using only the electrodynamic force: the nature of the electrodynamic force constrains
it to be in a specific direction, perpindicular to both the tether and the magnetic field vector,
at any point in time. The lack of control over the direction of the force is the factor that
leads to the difficulty in controlling a and § simultaneously.

Upon further inspection, it may seem that there really is no difficultly in using the electro-
dynamic force to control the pendular motion of a spinning T'SS because, for such a system,
we want to control the motion to the o — & plane, after which point we do not need any
control authority over 3. However, this appearance of controllability is simply an artifact of
the simplified magnetic field model used in the analysis presented above. If a more realistic
magnetic field model is used (such as the tilted, rotating dipole model used in the top-level
system model), in general there is always a component of the electrodynamic force out of
the orbit plane, and it is not possible to drive to motion to the orbit plane and then control
the in-plane motion as desired. The subsequent control of the in-plane motion necessarily
results in out-of-plane pendular motion, which would then have to be controlled back to zero
somehow.
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All of the above arguments illustrate the difficulty of controlling the pendular motion of the
tether using the electrodynamic force. For these reasons, we do not consider the electrody-
namic force as a control actuator in the developments that follow. Instead, we assume that
arbitrary control inputs corresponding to u, and ug are available, such that the equations
governing the pendular motion of the tether are

acosfB—2(a+ 1)50sinﬁ +3sinacosacos B = wu, (5.34)
EJr [(&+1)>+3cos’alsinfBcos B = ug (5.35)

which are obviously controllable. As mentioned previously, u, and ug could be provided by
small thrusters on the secondary end body. In the remainder of this section, several nonlinear
control design techniques are used to determine expressions for u, and ug that drive o and
0 to a desired planar trajectory.

5.3.2 Planar Trajectory Tracking

The first control design we consider is for controlling the pendular motion about an arbitrary
planar reference trajectory. We therefore want to determine control laws that drive 8 and

ﬂo to 0, and « to an arbitrary reference trajectory «, = «,(7). The method of feedback
linearization is used to derive these control laws.

Let the in-plane error be defined as
Co = O — Qi (5.36)

Differentiating Eq. (5.36) twice and using Eq. (5.34), the in-plane error dynamics are gov-
erned by

€q = 2(a+ 1)5tanﬁ — 3sinacos o + Yo a, (5.37)
cos 3

Let the control input be given by
Uy = | —ka1€a — ka2 — 2(& + 1)ﬁotanﬁ + 3sinacos o + @, | cos 3 (5.38)

where k,; > 0 are constant control gains, such that the closed-loop in-plane error dynamics
are
%Oa + ko&éa + /{:alea =0 (539)

Note that the control law given by Eq. (5.38) results in linear closed-loop error dynamics.
Because ko; > 0, we can see from Eq. (5.39) that the control law given by Eq. (5.38) drives
e exponentially to 0, and « exponentially approaches the reference trajectory. The control
gains can be selected to tailor the properties of the convergence of o to «..

Because the reference trajectory for the out-of-plane motion is § = ﬁo = 0, the out-of-plane
error is simply 4. From Eq. (5.35), let ug be given by

ug = —kg 3 — kmﬁo +[(& + 1)* + 3 cos® a sin 3 cos 3 (5.40)
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where kg; > 0 are constant control gains, such that the closed-loop dynamics for 3 are

B+ kg + kpn=0 (5.41)

As with the control law for wu,, the control law given by Eq. (5.40) results in closed-loop
dynamics for 3. Because the control gains are positive, from Eq. (5.41) we see that the
control law given by Eq. (5.40) drives /3 exponentially to 0. As with the in-plane motion, the
control gains can be selected to tailor the response of the controlled out-of-plane motion.

To determine appropriate values for the control gains, we note that Egs. (5.39) and (5.41)
are both of the form

The characteristic polynomial of Eq. (5.42) is
N koA +Ek =0 (5.43)

so the characteristic exponents of Eq. (5.42) are

ky | ko)
)\172 = —52 +1 k’l — (é) (544)

The real part of Eq. (5.44) determines the rate at which x (or equivalently, the errors in
a and ) converges to 0, and the imaginary part of Eq. (5.44) determines the oscillation
frequency of the controlled response of x. Given desired values for the rate of convergence
and the oscillation frequency, Eq. (5.44) can be used to determine appropriate control gains.

If we desire a critically-damped controlled response for x, we set

k= (%)2 (5.45)

such that both characteristic exponents have the same value. The error decreases in the
exponential envelope defined by e %27/2 so if we want the error to be p% of its initial value

after a time T', we choose ko as
2 100
ky=—=In|— 5.46
T n( p ) (5.46)
Using Eq. (5.46) in Eq. (5.45) to determine k; yields the control gains that result in a
critically-damped controlled error response.

We now consider the application of the control laws defined in Egs. (5.38) and (5.40) to two
different reference trajectories. First, let the reference trajectory correspond to a constant
in-plane spin rate,

a, (1) = Vh*r (5.47)

where h* is a constant that determines the in-plane spin rate. Figure 5.1 shows an example of
the controlled system response and corresponding control inputs for the reference trajectory
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defined in Eq. (5.47). The control gains and initial conditions used to generate the controlled
system response are listed in Tables 5.1 and 5.2, respectively. As the plots in Fig. 5.1
show, the control laws are successful in driving the pendular motion to the desired planar
reference trajectory. Note, however, that u, does not approach 0 as the reference trajectory
is approached, and instead approaches a steady-state oscillation with amplitude 1.5. To see
why this behavior occurs, observe from Eq. (5.38) that u, approaches the value

U, = 35in @ cos o

3 . (5.48)
= —sin ( h*T)
2

as the reference trajectory is approached. Physically speaking, Eq. (5.48) illustrates that
the control input must counteract the gravity-gradient torque acting on the system in order
to maintain a constant spin rate, resulting in steady-state oscillations of u,. Controlling
the pendular motion about a constant planar spin over extended periods of time therefore
requires a great deal of control effort.

Table 5.1: Parameters used to generate controlled system response for control about a con-
stant in-plane spin

Parameter Value
h* 25
Koo 1n(217?0)
k2,
ka1 N
ks ln(217?0)
k‘2
kg o

Table 5.2: Initial conditions used to generate controlled system response for control about a
constant in-plane spin

State Initial Value
« 0
o 4.75
5 0.5°
3 0

Next, consider the case in which the reference trajectory is a natural planar spinning motion,

(1) = am(Vh 7, \/3/h*) (5.49)
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Figure 5.1: System response and control inputs for control about a constant in-plane spin
rate
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Figure 5.2 shows an example of the controlled system response and corresponding control
inputs for this reference trajectory. The control gains and initial conditions used to generate
the solutions shown in Fig. 5.2 are once again listed in Tables 5.1 and 5.2. As with the first
reference trajectory we considered, the control laws are successful in driving the pendular
motion to the desired reference trajectory. We do note, however, that the in-plane control
input is smaller in magnitude than for the first reference trajectory considered, and also does
not experience steady-state oscillations. This behavior is due to the fact that the reference
trajectory is an exact solution to the uncontrolled equations of motion, and therefore does
not require any control effort to be maintained.

5.3.3 Planar H Tracking

In §5.3.2 we derived control laws that force the pendular motion to track a specific planar
reference trajectory. We now consider the case in which the reference motion is not a specific
planar motion, but is instead any natural planar motion with h = h*. In this development,
we are only concerned that the control drives the pendular motion to a planar trajectory
with certain desired qualitative characteristics; we are not concerned with exactly matching
a pre-specified time-history of a as we were previously.

Recall that the quantity H is defined as in Eq. (4.63). If the pendular motion is planar, then
H is equivalent to h as defined in Eq. (4.62). The goal of the control design is therefore to
drive 8 and ﬁo to 0 while simultaneously driving H to a desired value of h*. The end result
will be a natural planar motion with h = h*. Because we are driving the out-of-plane motion
to zero, the control law for ug is once again given by Eq. (5.40). The control gains kg can
be selected following the procedure outlined in §5.3.2.

Differentiating Eq. (4.63) and using Eqgs. (5.34) and (5.35), the time rate-of-change of H is

o

H=2 (&ua cos 5 + ﬁou5> (5.50)

From Eq. (5.50), let u, be given by

(5.51)

Uy =

1 [hu(H—h) s
_oozcosﬁ[ 2 +ﬁu4

where kz; > 0 is a constant control gain. Using Eq. (5.51) in Eq. (5.50), the closed-loop
dynamics for H become

H + knH = kyh” (5.52)

Analogous to the previous control law developments, we have chosen u, to result in linear
closed-loop dynamics for H. Because ky is positive, we see from Eq. (5.52) that the control
law given by Eq. (5.51) drives H to h* exponentially as 7 approaches infinity. Combined
with the control law given by Eq. (5.40), the control laws drive the pendular motion to a
natural planar trajectory with h = h*.
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To select an appropriate value for ks, note that the solution to Eq. (5.52) is

H(r) = b + [H(0) = h] e (5:53)
which can be rewritten as H(r) — b

T)— — o —knT 4

O — T e (5.54)

The left-hand side of Eq. (5.54) can be viewed as an error ratio; it is the ratio of the current
error in ‘H to the initial error in H. Say we want this error ratio to be a certain value, r, at
a time 7 = T. Then from Eq. (5.54), we should select the control gain to be

(5.55)

Figure 5.3 shows an example of the controlled system response for the planar H tracking
control. The corresponding control inputs are shown in Fig. 5.4. The initial conditions used
to generate the plots in Figs. 5.3 and 5.4 are listed in Table 5.2. The values of A* and the
out-of-plane control gains, kg;, are the same as those listed in Table 5.1, and the value of ky
is equal to that used for both kgi. As Fig. 5.3 shows, the control laws are successful in driving
the pendular motion to a natural planar trajectory with h = h*. Because the control law for
ug is the same as the one used previously, the magnitude of ug is nearly identical to that in
Figs. 5.1 and 5.2. The magnitude of u,, however, is significantly smaller than that required
by the previous control laws. This fact illustrates the primary advantage of the H tracking
control over the control laws derived previously: the in-plane control input is significantly
lower because we only require that the qualitative characteristics of the reference motion be
matched. Conversely, the primary disadvantage of the H tracking control is that we cannot
track a specific time-history for «, which could be required in certain situations.

5.3.4 Sliding Mode Control

Although the control law developments presented in this section are made using a lower-
level computational model, they are intended to be applied to the top-level computational
model, and ultimately an actual spinning T'SS. The effect of applying control laws developed
using a lower-level computational model to the top-level computational model is that the
pendular motion will not be driven exactly to the desired reference trajectory, and will
instead experience small amplitude oscillations about the desired planar motion. These small
oscillations can be attributed to unmodeled dynamics that are not accounted for by the lower-
level model. We would like to determine control laws using the lower-level computational
model that can account for the effects of these unmodeled dynamics, such that they can be
applied to the top-level computational model more effectively.
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Figure 5.4: Control inputs for planar H-tracking control

To account for the effects of unmodeled dynamics in the lower-level model, we modify
Egs. (5.34) and (5.35) as follows,

acos B —2(a+ 1)ﬂosinﬁ +3sinacosacos B = Uy + 0a (5.56)
3+ [(& +1)*+3cos’alsinBcos B = ug+ g (5.57)

The terms 0, and dg are unknown, time-varying disturbance terms that account for the
effects of unmodeled dynamics. Note that, in the case of a spinning TSS, the unmodeled
dynamics include the tether elastic vibrations, variations in the orbit of the system, and
attitude motion of the end bodies. The control objective is to determine expressions for u,
and ug that drive the pendular motion to a desired planar motion in spite of the unknown
disturbance terms. Specifically, we consider H-tracking control in which we drive the out-
of-plane motion to zero and H to a desired value of h*. The method we use to determine
these control laws is known as sliding mode control, a detailed description of which can be
found in Refs. [58] and [28]. The fundamental concepts of sliding mode control are discussed
as they are encountered in the developments presented below.

We first consider controlling the out-of-plane pendular motion to zero. Define the quantity

2=+ kgf (5.58)
where kg is a positive constant. From Eq. (5.58), if we could drive z; to zero in a finite time
and hold it there for all time, then § and § would exponentially approach 0 as 7 approaches
infinity. The surface z; = 0 is known as the sliding manifold or the sliding mode for the
(8 dynamics, and the control developments presented below are geared toward driving the
motion to the sliding manifold in a finite time. Moreover, we want to drive the motion to
the sliding manifold in spite of the unknown disturbance terms. Differentiating Eq. (5.58)
and using Eq. (5.57), the z; dynamics are governed by

[}

2 = —[(&+1)* + 3 cos® a] sin B cos B + l{:gﬂo +ug + 0 (5.59)
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From Eq. (5.59), let the control input be
ug = [(& +1)* + 3 cos® a] sin Bcos 3 — k:@ﬁo + vg (5.60)
such that Eq. (5.59) becomes
5’1 = vg + (5ﬁ (561)

Note that we have chosen ug to cancel the known, nonlinear components of Eq. (5.59) while
leaving the unknown disturbance term. The term vg must now be chosen to account for dg.

Define the candidate Lyapunov function for the z; dynamics as
1,

which is positive definite about z; = 0. Differentiating Eq. (5.62) and using Eq. (5.61), the
rate-of-change of V; along the system trajectory is

‘0/1 = 2120’1
=21 (Uﬁ + (55) (5.63)
< z1v5 + |21][ 5]

At this point, we make the assumption that the unknown disturbance d3 is bounded, such
that
105] < 3 (5.64)

where 07 is a positive constant. Using this definition in Eq. (5.63), the function Vi satisfies

Vi < 2105 + | 21|85 (5.65)

Now, let vg be given by

vg = —(bg + d5)sgn(z1) (5.66)
where bg > 0 is a control gain and sgn(z) is the signum function. Using Eq. (5.66) in
Eq. (5.65), we have

Vi < —z1(bs + 0p)sgn(z1) + |2118)
= —bg|z| (5.67)
<0

So, V1 is nonincreasing, and is therefore a Lyapunov function for the z; dynamics. The control
law given by the combination of Egs. (5.60) and (5.66) therefore stabilizes the pendular
motion about z; = 0. To gain further insight about the controlled motion of the system,
we must consider two cases. First, if |2;] = 0, then from the definition of V; we must have
Vi = 0. But, we also know that V; is nonincreasing, so if V; becomes 0, it must remain zero
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for all time, implying that z; remains zero for all time as well. Next, consider the case when
|z1] # 0. Noting that V] can also be written as

o d

Vi= |Z1|%(|Zl|) (5.68)
from Eq. (5.67) we have

d

— < -b 5.69

2 (Jzal) < ~bs (5.69)
Integrating Eq. (5.69), we obtain

21| < —bgT + |21(0)| (5.70)

which implies that |z;| reaches 0 in a finite time, T3, that satisfies

T, < 2O (5.71)
bg

Once |z1] reaches zero, we know that it remains 0 for all time. The control therefore drives
the out-of-plane pendular motion to the sliding mode in finite time, after which § and ﬁo
approach 0 according to z; = 0. This convergence is achieved in spite of the presence of the
unknown disturbance term 3. Combining Eqgs. (5.60) and (5.66), the composite control law

is
ug = [(& + 1)* + 3 cos® a] sin Bcos 3 — k‘gﬁo — (bs + d5)sgn(z1) (5.72)

To determine an expression for the control input u,, define the quantity

The surface z, = 0 defines the sliding mode for the in-plane pendular motion. If we can drive
25 to 0 and hold it there, H will remain at the desired value for all time. Because the control
law given by Eq. (5.72) drives the out-of-plane pendular motion to 0, the pendular motion
will therefore approach a natural planar trajectory with h = h*. Differentiating Eq. (5.73)
and using Eqgs. (5.56) and (5.57), the 2z dynamics are governed by

%5 = 2[&(uq + 0a) cos B + Blug + 55)] (5.74)

From Eq. (5.74), let u, be given by

Uy = = (”—“ - ﬁou5> (5.75)

qcos 3\ 2

such that the closed-loop dynamics for z5 become

2 = Vo + 2(8a6 cos B + 543) (5.76)
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As done in the development of ug, we have chosen u, to cancel certain nonlinear terms in
the 2o dynamics, while also containing a term, v,, that will be used to compensate for the
uncertainties d, and dg.

Define the candidate Lyapunov function for the zo dynamics as
Vo = %zg (5.77)
which is positive definite about zo = 0. Differentiating Eq. (5.77) and using Eq. (5.76), the
time rate-of-change of V5 along the system trajectory is
‘0/2 = 0%
= 29Uy + 229(0n cOS 5 + 5ﬂﬁo) (5.78)
< 2200 + 2|2 (6a]18] + 3515))

As done with dg, we assume that J, is bounded by

6a] < 62 (5.79)
such that Eq. (5.78) becomes
Va < 200 + 2|20|(85]&] + 651 8)) (5.80)
From Eq. (5.80), let v, be given by
Vo = —[ba + 2(55&| + 87515])]sgn(z2) (5.81)

where b, > 0 is a constant control gain, such that

o o

Vo < —2a[ba + 2(6%|&] + 8513])Isen(zs) + 2|2 (8%]&] + 5516])
= —by| 2| (5.82)
<0

The function Vj is therefore nonincreasing, and is a Lyapunov function for the z, dynamics.
The control law given by the combination of Egs. (5.75) and (5.81) stabilizes zo about 0.
Following similar logic as outlined previously for z;, we can further state that the control
law drives z5 to 0 in a finite time, 75, that satisfies

[22(0)]
ba

and hold zy at zero for all time. The control law given by Egs. (5.75) and (5.81) therefore
drives H to the desired value and holds it at that value, in spite of the unknown disturbance
terms. Combining Egs. (5.75) and (5.81), the composite control law is

 —fug — L[ba +2(53|G] + 0513]))sen(22)
N & cos 3

T, < (5.83)

(5.84)

U
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The control laws defined by Eqgs. (5.72) and (5.84) drive the pendular motion to the desired
reference motion in spite of the unknown disturbance terms. The only restrictions that we
have to place of the system dynamics are that the disturbance terms are bounded, which
is not a particularly restrictive assumption. However, we do note that the control laws are
discontinuous because of their reliance on the signum function, which is discontinuous when
its argument is 0. Such discontinuous control inputs can never be achieved by a real physical
system, so we must modify the control laws to remove these discontinuities.

Following Refs. [58] and [28], let the control inputs have the modified form

ug = [(& +1)* + 3 cos® o] sin B cos 3 — kgﬁo — (b + d)sat <ﬁ> (5.85)

€1

—fa‘uﬁ — 3[ba +2(0%16] + 6;;|6°|)]sat (5)
Uy = 5 (5.86)
acos 3
where g; are small positive constants and sat(z) is the saturation function
N

sat(z) = { sen(z), |z| > 1 (5.87)

Because of the form of the saturation function, the control laws defined by Egs. (5.85) and
(5.86) are continuous; however, the use of the saturation function in place of the signum
function means that the motion is not driven exactly to the sliding mode. Instead, the
motion is driven to a small neighborhood of the sliding mode called the boundary layer, the
size of which is determined by the £;. As the ¢; decrease, the boundary layer decreases in
size, such that it vanishes when both ¢; are 0. Once the control drives the system to the
boundary layer, z; and 2, remain in it for all time. In light of this fact, using Eqs. (5.85)
and (5.86) means that we can never exactly reach the desired reference motion, but we can
come arbitrarily close to it by appropriate choice of ¢;.

The control gains for the sliding mode controller can be determined as follows. First, bz and
b, can be determined from Eqs. (5.71) and (5.83) by specifying values for 77 and Tp. The
resulting values of b, and bz will ensure that z; and 2z, reach the boundary layer in times
that satisfy Eqgs. (5.71) and (5.83); however, we should note that the boundary layer may be
reached in much faster times than 7} and 75. To determine an appropriate value for kg, we
note that the out-of-plane motion is governed by

B+ksB=0 (5.88)
on the sliding mode. The solution to Eq. (5.88) is
B(r) = Blrx)e telr=T) (5.89)

where 7 is the time that the boundary layer is reached. Defining the ratio r = 3(7)/8(7%),
we can rewrite Eq. (5.89) as

(5.90)
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So, we can use Eq. (5.90) to determine kg such that § is reduced by a factor of r in a time
T — 7% after the boundary layer is reached.

Figure 5.5 shows an example of the controlled system repsonse using the sliding mode con-
troller, and the corresponding control inputs are shown in Fig. 5.6. The system parameters
used to generate the plots in Figs. 5.5 and 5.6 are listed in Table 5.3, and the initial con-
ditions are the same as those listed in Table 5.2. Note that specific values are assigned to
do and g, despite the fact that they are “unknown” terms. Values for d, and dg must be
set to generate the controlled system trajectories; however, the control laws have no specific
knowledge of these terms, other than the fact that they are bounded by the parameters 0},
and 05. As Fig. 5.5 shows, the control laws are successful in driving the pendular motion
to the desired planar motion with A = h*. From Figs. 5.5(e) and 5.5(f), we see that the
boundary layer (which is quite small for this particular example) is reached in a finite time,
after which the system approaches the desired reference motion. Figure 5.6(b) shows that
the magnitude of ug is on par with the magnitudes required of all of the control laws consid-
ered previously, while the magnitude of u, is the lowest we have seen thus far. However, we
do note that the control inputs do not approach 0 as 7 goes to infinity, and instead perform
steady state oscillations about 0. These oscillations are due to the fact that the control
laws must hold z; and zy in the boundary layer in spite of the disturbance terms, which
requires continuous control actuation. Such continuous actuation could eventually wear out
the control actuators, and is one of the primary disadvantages of using sliding mode control
to control the pendular motion.

Table 5.3: Parameters used to generate controlled system response for sliding mode control

Parameter Value
h* 25
ks )
b, 0)
by |5(0)+27:rﬁﬁ(0)\
da 0.01 cos(57)
op 0.01 cos(27)
5 0.02

5 0.02
€1 107°

€9 1073
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Figure 5.6: Control inputs for sliding mode control

5.3.5 Adaptive Sliding Mode Control

The sliding mode control laws derived in §5.3.4 are successful in driving the pendular motion
to the desired reference motion in spite of the unknown disturbance terms. However, the
control laws require a priori knowledge of the disturbance terms in the form of the upper
bounds 4, and ¢5. For systems such as a spinning TSS, this type of knowledge may not be
available, or it may be impractical to determine the upper bounds of the disturbances for
the entire range of system parameters. We would therefore like to determine control laws
that can account for the unknown disturbances without any a priori knowledge of them. To
determine such control laws, we once again use the principles of sliding mode control used
in §5.3.4, but also make use of some basic principles of adaptive nonlinear control.?®

Returning to Eq. (5.63), recall that the time rate-of-change of the Lyapunov function for the
z1 dynamics satisfies
V< 2108 + |21||5/3| (591)

In the sliding mode control law development, we assumed that we knew an upper bound on
|05| and proceeded to derive an expression for vg using that knowledge. We now relax the
assumption that we know anything about |d5| and determine an expression for vs. Let vg
be given by
vg = —bgsgn(z;) (5.92)
where bg = bz(7) is a positive, time-varying control gain. Using Eq. (5.92) in Eq. (5.91), we
have .
Vi < —=(bg — |0s])| | (5.93)

If bg > |0g|, then Xofl < 0 and we have a sliding mode controller similar to the one developed
previously. If bg < |0g|, however, then the Lyapunov rate will be positive and z; does not
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approach the sliding mode. In light of these facts, let bz be governed by the equation
b = (dpbs + ds: V1) H (sgn (V1)) (5.94)
where dg; > 0 are constant control gains and H(x) is the Heaviside function

1, >0
H(z) :{ 0. 7 <0 (5.95)

From Eq. (5.94), when 10/1 < 0 we have i)g = 0, and bg remains constant. When ‘0/1 > 0 we

have 53 > 0, and bg increases; the positive constants dg; dictate the rate of growth of bg,
which is proportional to the current value of bz and the current value of the Lyapunov rate.
In this manner, bz increases whenever the Lyapunov rate is positive until it reaches a value
that is larger than the upper bound of |0g|, after which it remains constant and the control
laws acts like the sliding mode control law developed previously. The update expression
given by Eq. (5.94) allows bz to adapt according to the current behavior of the system. In a
sense, Eq. (5.94) allows the control law to “learn” the value of bg that results in a negative
definite Lyapunov rate.

To ensure that the control law is continuous, let Eq. (5.92) be modified as

vg = —bgsat (ﬁ> (5.96)
€1

When used with the adaptation mechanism of Eq. (5.94), this control law ensures that z; is
driven to, and held within, the boundary layer. Once z; is held inside the boundary layer,
there may be times at which the Lyapunov rate is positive, and bg will be updated according
to Eq. (5.94). However, because z; has already reached the boundary layer, we no longer
need to update bg. We therefore set 135 = 01if |21] < &;. Combining Egs. (5.72), the composite
control law for the out-of-plane pendular motion is

ug = [(& + 1)* + 3 cos® a] sin B cos 3 — kgﬁo — bgsat (?) (5.97)
1

Returning to Eq. (5.78), recall that the Lyapunov rate for the z, dynamics satisfies

+135]1531) (5.98)

Va < 2900 + 2|22/ (1046

Similar to the procedure used to determine vg, let v, be given by
Vo = —basgn(zz) (5.99)

where b, = b,(7) is a positive, time-varying control gain. Using Eq. (5.99) in Eq. (5.98), we
have ) .
Va < =[ba — 2(|0alld| + |35]8])]|2| (5.100)
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In light of Eq. (5.100), let b, be governed by
boe = (do1bo + dosVa) H (sgn(V3)) (5.101)

where d,; > 0 are constant control gains. As discussed previously when considering bg,
Eq. (5.101) eventually results in a sliding mode controller that drives 2z to 0. To ensure that
the control input is continuous, however, we modify Eq. (5.99) as

Ve = —basat <@> (5.102)

€9
such that the composite control law is

—ugf — Shosat (i—z)

& cos 3

(5.103)

Uy =

Equations (5.97) and (5.103), in combination with the adaptation mechanisms of Eqs. (5.94)
and (5.101), drive the pendular motion to the desired reference motion. Moreover, they do
so in spite of the unknown disturbance terms, and without any a priori knowledge of the
disturbance terms.

Figure 5.7 shows an example of the controlled system response for the adaptive sliding mode
controller, and the corresponding control inputs and variable control gains are shown in
Fig. 5.8. The system parameters used to generate the plots in Figs. 5.7 and 5.8 are listed
in Table 5.4, and the initial conditions are the same as those listed in Table 5.2. Both of
the variable control gains were initially set to zero. As Fig. 5.7 shows, the control laws
are successful in driving the pendular motion to the desired reference motion; however, we
do note that the control maneuver takes longer than any of the control maneuvers consid-
ered previously. A particularly interesting aspect of the controlled motion is illustrated in
Fig. 5.7(f). The out-of-plane pendular motion is driven to the boundary layer rather early
in the maneuver, but does not stay there initially. This behavior is due to the fact that
the control gain bg is not large enough to account for the unknown disturbances when the
motion initially reaches the boundary layer, and the disturbances force the motion out of
the boundary layer. The control law subsequently drives the motion back to the boundary
layer, where it is once again forced out by the disturbances. Finally, bg becomes large enough
to fully counteract the effects of the disturbances, and the out-of-plane motion is driven to,
and held inside of, the boundary layer. The behavior illustrated by Fig. 5.7(f) demonstrates
the robustness of the adaptive sliding mode controller. Even though no knowledge of the
disturbances is used in the control laws, they adapt to overcome the disturbances and drive
the system to the reference motion.

From Fig. 5.8(b), we once again see that the out-of-plane control input is similar to those
required by all of the control laws considered previously. The in-plane control input is the
lowest required by all of the control laws. As with the regular sliding mode controller, the
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control inputs for the adaptive sliding mode controller do not approach 0 as 7 approaches
infinity, and instead undergo steady-state oscillations. These steady-state oscillations are
required to hold the motion in the boundary layer.

As shown by Figs. 5.8(c) and 5.8(d), both control gains start at 0 and quickly grow to larger
positive values. As time progresses and the motion approaches the boundary layer, the values
of both control gains level-off at constant values. Note, in particular, that bg approaches a
value that is very near 0.01. From Table 5.4, we see that this value is exactly the upper
bound of the out-of-plane disturbance term. The behavior of bg illustrates another advantage
of the adaptive sliding mode controller over its non-adaptive counterpart: the adaptation
mechanisms allow the control laws to “learn” the precise control gains required to make
the Lyapunov rates negative definite, whereas the regular sliding mode control laws require
estimates of these control gains. Such estimates may be overly conservative in some cases,
resulting in unnecessarily large control inputs.

Table 5.4: Parameters used to generate controlled system response for adaptive sliding mode
control

Parameter Value
h* 25
kg m
da 0.01 cos(57)
03 0.01 cos(27)
dor 1
dpo 100
dﬁl 1
d a2 100
£1 107°
£9 1073

5.4 Validation of Computational Model

In this section the validity of the control laws developed in the previous section is assessed
by applying them to the top-level computational model. From the examples presented in the
previous section, the three control laws that resulted in the lowest magnitude control inputs
are the H-tracking control laws, the sliding mode control laws, and the adaptive sliding
mode control laws. For this reason, only these control laws are applied to the top-level
computational model in this section.

To apply the control laws developed using the lower-level computational model to the top-
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level computational model, we note that the equations governing the pendular motion of the
tether in the top-level computational model can be written as

. M
Grcos B — 2(é + Qq)Bsin B+ 3Q% sinacosacos f = IA2 + A, (5.104)
A
s . 2 ) ) . MAl
B4 [(a+Qa)° +3Q% cos” afsin feos f = 7 + Ag (5.105)
A

where My; are control moments acting about A in the €; direction, and A,, Ag are terms
that account for various aspects of the system dynamics. The A terms include effects due
to the elastic vibrations of the tether, the variation of the orbit of A, the attitude motion of
the end bodies, and nonlinearities in the gravitational force acting along over the length of
the system. If we assume that the control moments are applied using small thrusters on the
secondary end body, B, then we have

MA = Lég X (FB1é3 — F32é2>
= Fpoleée; + FpiLé; (5.106)
= M€ + Myoe;
where F'g; are the components of the thrust vector applied at B. Note that a positive value
of Fpy implies a force in the negative €, direction. This convention is used to ensure that

a positive value of Fjs results in a positive value of My;. Using Eq. (5.106) in Eqgs. (5.104)
and (5.105) and placing the equations in nondimensional form, we have

0 Fp L
acosF—2(a+1)Bsinf + 3sinacosacosf = %—I—éa (5.107)
9 o ) 2 . FBQL
B4 [(@+1)°+3cos”afsinfeosf = T2 + 43 (5.108)
A

Comparing Egs. (5.107) and (5.108) to Egs. (5.56) and (5.57), the control forces acting at B
are related to the nondimensional control inputs by

1402
Fp = ( 4 A) Uq (5.109)
L
1492
Fpy = ( A A) ug (5.110)
L
Noting that
1
N :mBL2+§ﬁL3 (5.111)
we can rewrite Egs. (5.109) and (5.110) as
1
Fg = (mB + gpL) L2 uq (5.112)

1
Fy = (mB + gpL) L% ug (5.113)
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Equations (5.112) and (5.113) are used to apply the control laws developed using the lower-
level computational model to the top-level computational model.

5.4.1 Planar H Tracking

Figure 5.9 shows an example of the controlled system response for application of the H-
tracking control laws developed in §5.3.3 to the top-level computational model. The cor-
responding control inputs (in the form of forces applied at the secondary end body B) are
shown in Fig. 5.10. The system parameters and initial conditions used to generate the plots
shown in Figs. 5.9 and 5.10 are listed in Tables 5.5 and 5.7, respectively. The parameters
specific to the H-tracking control law are listed in Table 5.6. As Fig. 5.9 shows, the control
laws drive the pendular motion toward the desired reference motion, but the reference motion
is not approached asymptotically. This fact can be seen in Figs. 5.9(b), 5.9(d), and 5.9(e)
in which the out-of-plane motion and the quantity H undergo small amplitude oscillations
about the desired reference motion. These steady-state oscillations are due to the unmod-
eled dynamics contained in the top-level model that are not accounted for by the control
laws determined using the lower-level model. There may be certain situations in which the
small steady-state oscillations seen in the controlled motion do not have a significant impact
on the performance of the system. In such cases, the H-tracking control laws are adequate
for controlling the pendular motion of the tether. If more precise control of the pendular
motion is required, then some other method of control that can account for the effects of the
unmodeled dynamics must be employed.

Figure 5.10 shows that the maximum magnitude of both of the control forces required to
control the pendular motion is on the order of 1 N. Such control forces could certainly be
applied by small thrusters on the end bodies, however, the duration of the control maneuvers
could mean that a significant amount of propellant may be required. The control forces do
approach 0 as the maneuver is completed, meaning that the propellant required to perform
the maneuver decreases significantly as the maneuver nears completion. The control forces
do not approach 0 exactly, and instead undergo small amplitude steady-state oscillations due
to the effects of unmodeled dynamics. Such steady-state oscillations could be avoided by
switching off the inputs once the system is within a pre-specified range of the desired motion,
thereby saving the propellant that would be consumed through the steady-state oscillations
of the control forces.
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Table 5.5: System parameters used when applying control laws to the top-level computational
model

Primary End Body A

ma (kg) 50,000
I5 (kg-m?) diag (30,000 40,000 50,000)
py (m) (001
Secondary End Body B
Ig (kg-m?) diag(300 400 500)
P (m) (000
Tether
L (km) 20
p (kg/km) 2.5
EA (N) 55,000
c (s) 0.5
N, 4
Central Body
p (km?/s?) 3.986 x 10°

Table 5.6: Control parameters used when applying the H-tracking control to the top-level
computational model

Parameter Value
h* 25
ko, In (2 17?0)
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Table 5.7: Initial conditions used when applying control laws to the top-level computational

model

System Orbital Motion

a (km) 6,770
e 0.001
Q2 (deg) 300
I (deg) 50
w (deg) 45
v (deg) 0
A Attitude Motion
a (1000"

(0 4.75840 0)T

B Attitude Motion

(1000)T
(0 4.75Q 40 0)T

Pendular Tether Motion

a (deg) 0
B (deg) 0.5°
d (deg/s) 4.75Q0 40
B (deg/s) 0
Tether Elastic Vibrations

u(s,0) (m) 20sin (%)
4(5,0) (m) 0
v(85,0) (m) 20sin (%)
0(5,0) (m) 0
w(5,0) (m) AEF0) |5 -3 ()

i(5,0) (m) 2fO) |5 -2()
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tational model
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Figure 5.10: Control inputs for planar H-tracking control applied to the top-level computa-
tional model

5.4.2 Sliding Mode Control

Figure 5.11 shows an example of the controlled system response when the sliding mode
control laws developed in §5.3.4 are applied to the top-level computational model. The
corresponding control inputs are shown in Fig. 5.12. The system parameters and initial
conditions used to generate the plots in Figs. 5.11 and 5.12 are the same as those listed in
Tables 5.5 and 5.7. The parameters specific to the sliding mode control laws are listed in
Table 5.8. As Fig. 5.11 shows, the sliding mode control laws are successful in driving the
pendular motion of the tether to the reference motion. Recall, however, that the sliding
mode control laws drive the motion to an arbitrarily small neighborhood of the reference
motion called the boundary layer. In the example illustrated by Fig. 5.11, we have chosen
the boundary layer to be quite small to demonstrate the fact that the pendular motion can
be driven to the reference motion with a negligible error. This fact is most plainly seen in
Figs. 5.11(b), 5.11(d), and 5.11(e) in which it appears that the motion is driven exactly to
the reference motion.

Figure 5.12 shows that, like for the H-tracking control, the maximum magnitude of both of
the control forces required by the sliding mode controller is on the order of 1 N. However,
the steady-state oscillations of the control inputs seen in the sliding mode controller are
significantly larger than those seen in the H-tracking controller. In the H-tracking controller,
the steady-state input oscillations are a result of the unmodeled dynamics that are not
accounted for by the control laws. In the sliding mode controller, the steady-state input
oscillations are due to the fact that the control laws hold the motion inside the boundary
layer. These oscillations are therefore required to counteract the effects of the unmodeled
dynamics.

As mentioned previously in this chapter, the large amplitude steady-state oscillations of the
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inputs required by the sliding mode controller are one of its principle drawbacks. If precise
tracking of the reference motion is not required, then it is most likely much more efficient to
use the H-tracking control laws because they would require significantly less propellant over
extended periods of time. However, if precise tracking of the reference motion is required,
then we have demonstrated that the sliding mode control laws are capable of providing such
control, despite the fact that they are derived using a lower-level model that does not account
for all of the relevant system dynamics. The cost of achieving such precise control of the
pendular motion of the tether is that large steady-state control inputs may be required. In
many situations it may be possible to control the pendular motion using a combination of
the H-based and sliding mode controllers. The majority of the time the H-tracking control
could be used to control the motion, and the sliding mode controller would be employed only
in situations for which precise control is required. Such a combination of the two control
methods would result in a more efficient use of the propellant required to provide the control
forces.

Table 5.8: Control parameters used when applying the sliding mode control laws to the
top-level computational model

Parameter Value
h* 25
: .
ba 0.0
8 27
O 0.2
5 0.2
€1 107°
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Figure 5.12: Control inputs for sliding mode control

5.4.3 Adaptive Sliding Mode Control

We have seen that the sliding mode control laws developed using the lower-level computa-
tional model can be applied to the top-level computational model to precisely control the
pendular motion to the reference motion. As discussed in §5.3.5, the sliding mode control
laws require a priori knowledge of the upper bounds on the disturbances caused by the dy-
namics not accounted for by the control laws. For a TSS, these upper bounds depend on a
number of different system parameters, and may vary greatly between particular systems.
For this reason, we developed the adaptive sliding mode control laws in §5.3.5 that do not
rely on any a priori knowledge of the disturbances due to the unmodeled dynamics.

Figure 5.13 shows an example of the system response when the adaptive sliding mode control
laws are applied to the top-level computational model. The corresponding control forces and
variable control gains are shown in Fig. 5.14. The system parameters and initial conditions
used to generate the controlled response are once again listed in Tables 5.5 and 5.7, and the
parameters specific to the adaptive sliding mode control laws are listed in Table 5.9. Both of
the variable control gains are initially set to 0. From Figs. 5.13 and 5.14, we can see that the
control laws are successful in controlling the pendular motion about the reference motion.
As done for the regular sliding mode controller, we have chosen the boundary layer to be
quite small, such that it appears that the motion exactly tracks the reference motion. One
particular point to note about the controlled system response is that the out-of-plane motion
is driven to the boundary layer several times before the control law has adapted sufficiently
such that the motion can be held in the boundary layer. This type of behavior was also seen
in §5.3.5, and is illustrated in Fig. 5.13(f).

Figure 5.14 shows that the maximum magnitude of both of the control gains required by the
adaptive sliding mode controller is once again on the order of 1 N. We also once again see
the large amplitude steady-state oscillations of the control forces that are required to hold
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the motion in the boundary layer. These large magnitude steady-state control inputs could
require an excessively large amount of fuel over extended periods of time, so the adaptive
sliding mode controller should only be applied in situations for which precise control of the
pendular motion is required. Figures 5.14(c) and 5.14(d) illustrate how the variable control
gains change over time and eventually level-off at constant values. These figures illustrate
how the adaptation mechanisms included in the control laws allow the laws to “learn” the
appropriate values of the control gains.

Table 5.9: Control parameters used when applying the adaptive sliding mode control laws
to the top-level computational model

Parameter Value
h* 25
ks 1n(217?0)
Ao 10~4
da2 1
ds 1073
dﬁg 1
€1 107°
E9 10~

5.5 Summary

In this chapter we used a number of nonlinear control design techniques to develop methods
of controlling the pendular motion of the tether in a spinning T'SS. Because of the relative
simplicity of its mathematical model, the lower-level system model used in Ch. 4 to study
the dynamics of spinning T'SS was also used in this chapter to derive the control laws. A
nonlinear controllability analysis was performed to demonstrate the inherent difficulty of
controlling the pendular motion using only electrodynamic forcing, so the control laws were
developed assuming that arbitary control inputs are available to control both the in- and
out-of-plane pendular motion.

Four different sets of control laws were developed in this chapter. The first set of control laws
allows for tracking of an arbitrary planar reference trajectory. The specific cases of tracking
a linear growth of the in-plane angle (corresponding to a constant in-plane spin rate) and
tracking of a specific natural in-plane motion were used to demonstrate the performance of
the control laws. The second set of control laws allows for tracking of a natural planar motion
with a specific value of the parameter h. The difference between these control laws and the
first set is that they do not force the phase angle of the final in-plane motion to be mathced;
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Figure 5.13: System response for adaptive sliding mode control applied to the top-level
computational model
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all that is matched is the value of h of the desired natural planar motion. In general, the
fact that the phase angle is not matched results in lower control inputs than required when
the phase angle is matched. The third set of control laws are based on principles of sliding
mode control, meaning that they can control the pendular motion about a desired reference
motion in spite of the presence of unknown disturbance terms due to unmodeled dynamics.
The only constraint required of these control laws is that the unknown disturbances are
bounded, and that these bounds are known a priori. One of the main drawbacks of using the
sliding mode control laws is that they can require relatively large steady-state control inputs
to hold the system at the reference motion. The magnitude of these steady-state control
inputs depends on the magnitude of the disturbances, and they may become excessively
large for some systems. The fourth and final set of control laws developed in this chapter
is an extension of the third set to include some principles of adaptive control. For a typical
TSS, it may be difficult or impractical to determine the bounds on the disturbance terms
required by the sliding mode control laws. In light of this fact, the fourth set of control
laws includes adaptation mechanisms that allow the control gains included in the laws to
start at 0 and gradually “learn” what values they should be to compensate for the unknown
disturbances and drive the system to the reference motion. In this manner, precise control
of the pendular motion is achieved without any a priori knowledge of the disturbance terms.
As with the regular sliding mode control laws, however, relatively large steady-state control
inputs can be required to compensate for the unknown disturbance terms.

The second, third, and fourth sets of control laws derived in this chapter were applied to
the top-level computational model to assess their applicability to an actual spinning TSS.
The second set of control laws were successful in driving the pendular motion of the top-
level computational model to the reference motion; however, the fact that the top-level
model contains dynamics that are not accounted for by the lower-level model results in
small steady-state oscillations about the reference motion. These steady-state oscillations
can be quite small, and could most likely be tolerated for many applications. Both sets of
sliding mode control laws were also successful in driving the pendular motion of the top-
level computational model to the reference motion, but these control laws achieve much
more precise tracking because of their ability to compensate for the effects of unmodeled
dynamics. As mentioned previously, the main drawback of either set of sliding mode control
laws is that they require relatively large steady-state control inputs to compensate for the
effects of unmodeled dynamics. When applied to the top-level computational model, these
large steady-state inputs translate to large propellant requirements for the thrusters on the
secondary end body that provide the control forces. In practice, a combination control
scheme incorporating the sliding mode control and the second set of control laws could be
applied to more efficiently manage the propellant required to control the pendular motion.
The second set of control laws would be used for most situations for which less precise control
is needed, and the sliding mode control laws would only be used in situations that require
precise control of the pendular motion.



Chapter 6

Summary and Recommendations for
Future Work

Tethered satellite systems have a great deal of potential for a wide range of future space-based
applications. Although a great deal of research has already been conducted on the dynamics
and control of T'SS, there remain a number of open areas of study that must be addressed
before TSS can be widely put to use. The objective of the work presented in this dissertation
is to address several of these open areas of study, and in the process identify new avenues
down which T'SS dynamics and control research should progress. The original contributions
provided by this dissertation are summarized below, and we also present recommendations
for future work on T'SS dynamics and control.

6.1 Summary of Contributions

One of the main contributions provided by this dissertation is the computational model val-
idation procedure presented in Ch. 2. In an ideal situation, the predictions made by the
computational model for a particular physical system are compared to experimental data
to assess the predictive capability of the computational model. For a TSS, such experimen-
tal data does not exist, so some other means of validating TSS computational models is
required. The validation procedure presented in Ch. 2 uses the output of a top-level compu-
tational model in place of the non-existent experimental data. The conceptual model of the
physical system used to develop the top-level computational model must therefore contain
as few simplifying assumptions as possible, while still allowing for efficient determination of
numerical solutions for the behavior of the system. The accuracy of the numerical solutions
produced by the top-level computational model must also be rigorously verified before they
can be used to assess the validity of any predictions made using lower-level computational
models. The validation procedure presented in Ch. 2 is by no means ideal, most notably

200



201

because there is no guarantee that the top-level computational model itself makes accurate
predictions about the behavior of the physical system. Only experimental data can be used
to perform validation in the truest sense of the word, but we believe that the computational
model validation procedure presented in this work is the best available option for systems,
like a TSS, for which experimental data is not available.

Motivated by the validation procedure outlined in Ch. 2, a top-level computational model for
the dynamics and control of TSS was developed in Ch. 3. The system was assumed to consist
of two finite, rigid end bodies connected by a flexible tether. The tether is allowed to carry a
constant electrical current, meaning that the model can be used to analyze electrodynamic
tether systems. The mathematical model of the system was derived and used to develop two
different computational models, each based on a different method of spatially discretizing
the partial differential equations governing the elastic vibrations of the tether. The first
method is the assumed modes method, and the second method is the finite element method.
Computer codes were written to produce numerical solutions for both computational models,
and the method of manufactured solutions was used to verify the accuracy of these numerical
solutions. To the knowledge of the author, the work presented in Ch. 3 represents the first
time that the MMS has been applied to a computational model for the dynamics and control
of a TSS. A qualitative comparison of the two computational models was made and it was
determined that the FEM-based computational model is better suited to the study of TSS
dynamics and control. For this reason, the FEM-based computational model was used as the
top-level computational model for TSS dynamics and control throughout this dissertation.

Because of the complicated nature of the top-level system model, studying the behavior of
a TSS using the top-level computational model is impractical in most situations. Accurate
numerical solutions can take a significant amount of time to produce using the top-level
computational model, so studying the behavior of the system over the entire parameter
space can be practically impossible. For this reason, it is entirely justifiable to use simplified
system models that allow for much easier analysis of the system. In Ch. 4, a lower-level
computational model was used to derive results related to the dynamics of the tether in a
spinning T'SS. The lower-level model treats the tether as two point mass end bodies connected
by a flexible tether, with the primary end body constrained to an unperturbed circular orbit.
The pendular motion of the tether is assumed to affect the transverse vibrations of the tether,
but the transverse vibrations are assumed to have no influence on the pendular motion. The
longitudinal elastic vibrations of the tether are assumed to be negligible.

The nominal pendular motion of a spinning TSS is in the orbit plane, so the equations
governing the pendular motion of the tether in the lower-level mathematical model were
linearized about a planar motion. The resulting equation for the in-plane pendular motion
is decoupled from the equation governing the out-of-plane pendular motion, and a solution
for the in-plane motion is determined in terms of Jacobi elliptic functions. When this solution
for the in-plane motion is used in the equation governing the out-of-plane motion, the result is
a Hill’s equation, and Floquet theory was used to analyze the stability properties of the out-
of-plane pendular motion. The Floquet analysis showed that the lower-level computational
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model predicts that the out-of-plane pendular motion is unstable for some large-amplitude
in-plane oscillatory motion, as well as ranges of rotational in-plane motion for systems with
both positive and negative in-plane spin rates. The instability regions for systems with a
negative in-plane spin rate correspond to systems for which the tether undergoes periods of
slack, so they would likely not be used for an actual spinning T'SS in spite of the unstable
out-of-plane motion. However, the predicted instability regions for systems with a positive
in-plane spin rate do not pass through periods of slackness, so they could have possible
application for an actual spinning TSS. If such a system were used, a great deal of control
effort would be required to counteract the effects of the unstable out-of-plane motion. The
instabilities in the out-of-plane pendular motion derived in Ch. 4 have not been reported
previously, and are an original contribution of this dissertation.

For spinning T'SS with relatively large in-plane spin rates, the Hill’s equation used to model
the small out-of-plane pendular motion can be approximated with sufficient accuracy by a
Mathieu’s equation. Floquet’s theorem was used to determine approximate solutions to the
Mathieu’s equation that are a linear combination of four simple harmonic oscillators. The
two lowest-frequency oscillators contribute the greatest to the overall amplitude of the out-
of-plane oscillations, and the frequency of all four of the oscillators increases as the in-plane
spin rate increases. Like the predicted instabilities in the out-of-plane pendular motion, the
approximate solutions for large in-plane spin rates have not been reported previously, and
are an original contribution of this dissertation.

In addition to the pendular motion of the tether, the lower-level computational model was
used to study the transverse elastic vibrations of a spinning T'SS. The transverse vibrations
are assumed to be small relative to the length of the tether, and the out-of-plane pendular
motion is once again assumed to be small. The resulting equations governing the transverse
elastic vibrations are a set of decoupled, linear, partial differential equations, and the method
of separation of variables is used to analyze these equations. The mode shapes for the
transverse vibrations are determined in terms of a hypergeometric function, and an expression
for the eigenvalue corresponding to each mode shape is determined. The eigenvalues and
the solution for the in-plane pendular motion are used in the equations governing the time-
dependent portions of the assumed solution forms for the transverse vibrations, resulting
in Hill’s equations. Floquet theory was used to analyze these equations and show that
the lower-level computational model predicts that the transverse vibrations are unstable
for certain combinations of in-plane spin rate and system mass distribution. The largest
instability regions correspond to systems with a relatively low in-plane spin rate and a
secondary end mass that is small relative to the mass of the tether. The instability regions
become progressively smaller as the in-plane spin rate and mass of the secondary end body
are increased. Unlike the results related to the stability of the out-of-plane pendular motion,
these results related to the instabilities in the transverse elastic vibrations of the tether are
not new, and were previously reported in Refs. [5] and [§].

Because they were determined using a lower-level computational model, the results related to
the motion of the tether in a spinning TSS presented in Ch. 4 were compared to predictions
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made by the top-level computational model to assess their validity. Numerous validation tests
were used to show that the instabilities in the out-of-plane pendular motion predicted by the
lower-level computational model are also predicted by the top-level computational model,
meaning that these predictions are validated. The approximate solutions for the out-of-plane
motion compare favorably to the predictions made by the top-level computational model in a
qualitative sense, but significant quantitative differences develop between the predictions over
longer time spans. These differences are due to slight errors in the approximate frequencies
that, over time, lead to significant phase differences. Despite these quantitative differences,
however, the approximate solutions accurately reproduce the qualitative features of the out-
of-plane pendular motion predicted by the top-level computational model.

A number of validation tests were used to show that the instabilities in the transverse
elastic vibrations of the tether predicted by the lower-level computational model are not
predicted by the top-level computational model. These results are therefore invalidated,
and the lower-level system model must be altered to achieve better agreement with the top-
level computational model. The main source of error in the lower-level predictions appears
to stem from the assumption of a one-way coupling between the two modes of the tether
motion. Any further study of the transverse vibrations of a spinning T'SS should not use
such an assumption, and should consider the transverse vibrations and pendular motion to
be completely coupled.

The validation tests presented in Ch. 4 are one of the most significant contributions provided
by this dissertation. They show that predictions made by lower-level computational models
can both agree and disagree with those made by the top-level computational model. If the
predictions made by the two models agree, then the lower-level predictions are given a weight
and significance that they would not have if no kind of validation had been performed. If the
predictions made by the two models do not agree, then the lower-level system model must be
altered in some manner to achieve better agreement. The validation tests performed on the
results pertaining to the transverse elastic vibrations of the tether clearly demonstrate that
the mathematical correctness of a prediction does not mean that it can, or should, be applied
to the physical system. Some form of validation must be performed to tie the predictions
back to the actual physical system in order for the predictions to have any real significance.

The final significant contribution made in this dissertation is the control laws for the pendular
motion of the tether developed in Ch. 5. All of these control laws were developed using a
lower-level system model, and all drive the pendular motion to a desired planar reference
motion. The control inputs used to control the pendular motion are assumed to be arbitrary
control torques that are most likely due to thrusters on the end bodies. Two of the control
laws developed in Ch. 5 are based on principles of sliding mode control, meaning that they
can control the system about the reference motion in the presence of unknown disturbances.
When applied to the top-level computational model, these unknown disturbances are due to
the dynamics not accounted for by the lower-level model.

Several of the control laws were applied to the top-level computational model to assess their
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applicability to an actual TSS. For the control laws that do not account for the unmodeled
system dynamics, the pendular motion does not asymptotically approach the desired motion,
but instead undergoes small amplitude oscillations about the desired reference motion due
to the effects of the unmodeled dynamics. The sliding mode control laws were demonstrated
to be capable of eliminating these steady-state oscillations about the reference motion at
the cost of requiring relatively large magnitude steady-state control inputs. Because of this
fact, the sliding mode controllers should only be used in situations for which precise control
of the pendular motion is required. In most other situations, the control laws that do not
account for unmodeled dynamics should prove sufficient in controlling the pendular motion
of the tether.

6.2 Recommendations for Future Work

The work presented in this dissertation addresses only a handful of the open areas of research
in TSS dynamics and control. Many issues have yet to be adequately addressed, and the
work in this dissertation raises several new questions on its own. In this section, we make
recommendations for ways in which the work presented in this dissertation can be extended
in future TSS dynamics and control research.

The first way in which the work in this dissertation can be extended is to refine the top-level
system model. Despite the fact that the system model presented in Ch. 3 is taken as the
top-level system model, it contains several assumptions about the physical system that could
be relaxed to make the model a better abstraction of reality. Most of these assumptions are
related to the physical environment in which the T'SS operates; recall that the only external
forces acting on the system in the top-level system model are the gravitational force of
the central body and the electrodynamic force. Other external forces, such as atmospheric
drag and solar radiation pressure, could be added to the model, along with other effects
like thermal expansion of the tether due to crossings between shadow and sunlight. The
gravitational and electrodynamic force models can themselves be extended by using higher-
order spherical harmonic expansions of the gravitational and magnetic fields of the central
body. Modeling all of these external forces would make the top-level system model a better
representation of an actual TSS, and would therefore provide an even better substitute for
experimental data until it can be collected.

The fact that experimental data from an actual TSS is not readily available does not mean
that data cannot be collected to validate some aspects of the system model. For example,
the string model for the tether can be applied to any type of vibrating string, not just a
TSS. In light of this fact, experimental data collected on an experimental setup as simple
as a pendulum could be used to determine if a string model is adequate for modeling the
vibrations of a TSS. Such experiments are conducted in Ref. [29]; however, comparison
with the computational model is conducted by means of stop-motion photographs instead of
physical measurements. More rigorous validation test than the ones conducted in Ref. [29]
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would greatly enhance the level of confidence in modeling of TSS dynamics.

The dynamic analysis of spinning TSS presented in Ch. 4 can be extended in a number of
ways. Many extensions of the system model used in Ch. 4 will result in equations that are
small perturbations of those used in Ch.4. For example, orbital eccentricity and electrody-
namic forcing introduce small perturbation terms into the equations governing the pendular
motion of the tether. The effects of these additional influences can be studied using various
perturbation methods (such as the method of averaging) with the solutions derived in Ch. 4
as the generating solutions for the perturbation analysis. The variation of the system orbit
due to various external influences can also be studied by viewing the orbital motion as a
small perturbation of a fixed orbit. Another way in which the dynamic analysis in Ch. 4 can
be extended is to develop a new computational model for the elastic vibrations of the tether
that takes into account the full coupling between the pendular motion and elastic vibrations
of the tether. It may be possible to derive analytical results on the stability of the transverse
vibrations using this new lower-level system model, but it is likely that any accurate study
of the elastic vibrations of the tether will have to rely on numerical solutions.

One significant way in which the control analysis presented in Ch. 5 can be extended is
to perform a more thorough controllability analysis of the system for the case in which the
electrodynamic force is the only control input. It may be possible to perform certain types of
control maneuvers using only the electrodynamic force, and knowing these maneuvers could
prove useful because they would require no propellant. Along the same lines, it would be
useful to determine optimal control laws that minimize the total control input required to
control the pendular motion, thereby minimizing the required propellant. Both open- and
closed-loop optimal control laws could be developed. Some hybrid control strategy could
be developed that uses a combination of electrodynamic forcing and thrusters on the end
bodies. The electrodynamic force could be used as the only control input for times when
the pendular motion can be controlled adequately using only the electrodynamic force, and
thrusters on the end bodies could be employed only in situations for which they are needed to
make the system controllable. One final way in which the control analysis presented in Ch. 5
can be extended is to include the orbital motion in the system model and determine methods
of controlling the orbital motion and the motion of the tether simultaneously, perhaps using
only the electrodynamic force.

Lastly, we must note that the ultimate extension of the work presented in this dissertation
would be to apply it to an actual TSS. All aspects of the work covered in Chs. 3-5, including
the validity of the top-level computational model, could be rigorously verified by applying
the various results and predictions to an operational TSS, or to experimental data obtained
from an actual TSS.
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